A228179 Irregular table where the n-th row consists of the square roots of 1 in Z_n.
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 3, 5, 7, 1, 8, 1, 9, 1, 10, 1, 5, 7, 11, 1, 12, 1, 13, 1, 4, 11, 14, 1, 7, 9, 15, 1, 16, 1, 17, 1, 18, 1, 9, 11, 19, 1, 8, 13, 20, 1, 21, 1, 22, 1, 5, 7, 11, 13, 17, 19, 23, 1, 24, 1, 25, 1, 26, 1, 13, 15, 27, 1, 28, 1, 11
Offset: 2
Examples
The table starts out as follows: 1 1 2 1 3 1 4 1 5 1 6 1 3 5 7 1 8 1 9 1 10 1 5 7 11 ...
Links
- Alois P. Heinz, Rows n = 2..2000 of irregular triangle, flattened
Crossrefs
Programs
-
Maple
T:= n-> seq(`if`(k&^2 mod n=1, k, NULL), k=1..n-1): seq(T(n), n=2..50); # Alois P. Heinz, Aug 20 2013
-
Mathematica
Flatten[Table[Position[Mod[Range[n]^2, n], 1], {n, 2, 50}]] (* T. D. Noe, Aug 20 2013 *)
-
Python
from itertools import chain, count, islice from sympy.ntheory import sqrt_mod_iter def A228179_gen(): # generator of terms return chain.from_iterable((sorted(sqrt_mod_iter(1,n)) for n in count(2))) A228179_list = list(islice(A228179_gen(),30)) # Chai Wah Wu, Oct 26 2022
-
Sage
[[i for i in [1..k-1] if (i*i).mod(k)==1] for k in [2..n]] #changing n gives you the table up to the n-th row.
Comments