cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228180 The number of single edges on the boundary of ordered trees with n edges.

Original entry on oeis.org

0, 1, 2, 6, 19, 61, 199, 661, 2234, 7668, 26674, 93858, 333524, 1195288, 4315468, 15681838, 57312643, 210529213, 776872243, 2878482523, 10704933793, 39945106573, 149511432793, 561182969173, 2111812422871, 7965992783803, 30114859723751, 114079902339303, 432975153092011, 1646215731143667
Offset: 0

Views

Author

Louis Shapiro, Aug 20 2013

Keywords

Comments

Apparently the partial sums of A070031. - R. J. Mathar, Aug 25 2013

Examples

			For n=3 the UUUDDD has 3 single edges while UUDDUD, UDUUDD and UUDUDD each have one single edge, i.e., an edge with no siblings.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x*(1-Sqrt[1-4*x])/(2*x) + 2*x^3*((1-Sqrt[1-4*x])/(2*x))^4)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    x = 'x + O('x^66);
    C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
    gf = (x*C+2*x^3*C^4)/(1-x);
    concat([0], Vec(gf) ) \\ Joerg Arndt, Aug 21 2013

Formula

G.f.: (x*C+2*x^3*C^4)/(1-x) where C is the g.f. for the Catalan numbers A000108.
Conjecture: 2*(n+1)*a(n) +(-13*n+5)*a(n-1) +(23*n-37)*a(n-2) +6*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Aug 25 2013
a(n) ~ 5*4^n / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 01 2014