cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228210 x-values in the solutions to x^2 - 5y^2 = 44.

Original entry on oeis.org

7, 8, 13, 17, 32, 43, 83, 112, 217, 293, 568, 767, 1487, 2008, 3893, 5257, 10192, 13763, 26683, 36032, 69857, 94333, 182888, 246967, 478807, 646568, 1253533, 1692737, 3281792, 4431643, 8591843, 11602192, 22493737, 30374933, 58889368, 79522607, 154174367
Offset: 1

Views

Author

Colin Barker, Aug 16 2013

Keywords

Comments

Also values of x (or y) in the solutions to x^2 - 3xy + y^2 + 55 = 0.

Crossrefs

Cf. A228208.

Programs

  • Magma
    I:=[7,8,13,17]; [n le 4 select I[n] else 3*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 17 2013
  • Mathematica
    CoefficientList[Series[-(x - 1) (7 x^2 + 15 x + 7) / ((x^2 - x - 1) (x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 17 2013 *)
    LinearRecurrence[{0,3,0,-1},{7,8,13,17},40] (* Harvey P. Dale, Jun 01 2020 *)
  • PARI
    Vec(-x*(x-1)*(7*x^2+15*x+7)/((x^2-x-1)*(x^2+x-1)) + O(x^100))
    

Formula

G.f.: -x*(x-1)*(7*x^2+15*x+7) / ((x^2-x-1)*(x^2+x-1)).
a(n) = 3*a(n-2)-a(n-4).