A228273 T(n,k) is the number of s in {1,...,n}^n having longest ending contiguous subsequence with the same value of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 2, 0, 18, 6, 3, 0, 192, 48, 12, 4, 0, 2500, 500, 100, 20, 5, 0, 38880, 6480, 1080, 180, 30, 6, 0, 705894, 100842, 14406, 2058, 294, 42, 7, 0, 14680064, 1835008, 229376, 28672, 3584, 448, 56, 8, 0, 344373768, 38263752, 4251528, 472392, 52488, 5832, 648, 72, 9
Offset: 0
Examples
T(0,0) = 1: []. T(1,1) = 1: [1]. T(2,1) = 2: [1,2], [2,1]. T(2,2) = 2: [1,1], [2,2]. T(3,1) = 18: [1,1,2], [1,1,3], [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,1,2], [2,1,3], [2,2,1], [2,2,3], [2,3,1], [2,3,2], [3,1,2], [3,1,3], [3,2,1], [3,2,3], [3,3,1], [3,3,2]. T(3,2) = 6: [1,2,2], [1,3,3], [2,1,1], [2,3,3], [3,1,1], [3,2,2]. T(3,3) = 3: [1,1,1], [2,2,2], [3,3,3]. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 2; 0, 18, 6, 3; 0, 192, 48, 12, 4; 0, 2500, 500, 100, 20, 5; 0, 38880, 6480, 1080, 180, 30, 6; 0, 705894, 100842, 14406, 2058, 294, 42, 7; 0, 14680064, 1835008, 229376, 28672, 3584, 448, 56, 8;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
T:= (n, k)-> `if`(n=0 and k=0, 1, `if`(k<1 or k>n, 0, `if`(k=n, n, (n-1)*n^(n-k)))): seq(seq(T(n,k), k=0..n), n=0..12);
-
Mathematica
f[0,0]=1; f[n_,k_]:=Which[1<=k<=n-1,n^(n-k)*(n-1),k<1,0,k==n,n,k>n,0]; Table[Table[f[n,k],{k,0,n}],{n,0,10}]//Grid (* Geoffrey Critzer, May 19 2014 *)