cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228291 a(n) = Sum_{k=1..7} n^k.

Original entry on oeis.org

0, 7, 254, 3279, 21844, 97655, 335922, 960799, 2396744, 5380839, 11111110, 21435887, 39089244, 67977559, 113522234, 183063615, 286331152, 435984839, 648232974, 943531279, 1347368420, 1891142967, 2613136834, 3559590239, 4785883224, 6357828775, 8353082582
Offset: 0

Views

Author

Alois P. Heinz, Aug 19 2013

Keywords

Crossrefs

Column k=7 of A228275.

Programs

  • Maple
    a:= n-> `if`(n=1, 7, (n^8-n)/(n-1)):
    seq(a(n), n=0..30);
  • Mathematica
    Table[Total[n^Range[7]],{n,0,30}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,7,254,3279,21844,97655,335922,960799},30] (* Harvey P. Dale, Dec 06 2018 *)
  • R
    a <- c(0, 7, 254, 3279, 21844, 97655, 335922, 960799)
    for(n in (length(a)+1):30) a[n] <- 8*a[n-1] -28*a[n-2] +56*a[n-3] -70*a[n-4] +56*a[n-5] -28*a[n-6] +8*a[n-7] -a[n-8]
    a  [Yosu Yurramendi, Sep 03 2013]

Formula

G.f.: x*(x^6+78*x^5+981*x^4+2332*x^3+1443*x^2+198*x+7)/(x-1)^8.
a(1) = 7, else a(n) = (n^8-n)/(n-1).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) with n > 7, a(0)=0, a(1)=7, a(2)=254, a(3)=3279, a(4)=21844, a(5)=97655, a(6)=335922, a(7)=960799. - Yosu Yurramendi, Sep 03 2013