A228310 The hyper-Wiener index of the hypercube graph Q(n) (n>=2).
10, 72, 448, 2560, 13824, 71680, 360448, 1769472, 8519680, 40370176, 188743680, 872415232, 3992977408, 18119393280, 81604378624, 365072220160, 1623497637888, 7181185318912, 31610959298560, 138538465099776, 604731395276800, 2630031813640192
Offset: 2
References
- Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993 (p. 161).
Links
- R. Balakrishnan, N. Sridharan and K. Viswanathan Iyer,, The Wiener index of odd graphs, J. Ind. Inst. Sci., vol. 86, no. 5, 2006. [Cached copy]
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64)
Programs
-
Maple
a := proc (n) options operator, arrow: 4^(n-2)*n*(3+n) end proc: seq(a(n), n = 2 .. 25);
-
Mathematica
LinearRecurrence[{12,-48,64},{10,72,448},30] (* Harvey P. Dale, Dec 13 2024 *)
Formula
a(n) = 4^{n-2}*n*(3+n).
G.f.: 2*x^2*(5 - 24*x + 32*x^2)/(1-4*x)^3.
The Hosoya-Wiener polynomial of Q(n) is 2^{n-1}*((1+t)^n - 1).
Comments