A228318 The Wiener index of the graph obtained by applying Mycielski's construction to the star graph K(1,n).
15, 33, 59, 93, 135, 185, 243, 309, 383, 465, 555, 653, 759, 873, 995, 1125, 1263, 1409, 1563, 1725, 1895, 2073, 2259, 2453, 2655, 2865, 3083, 3309, 3543, 3785, 4035, 4293, 4559, 4833, 5115, 5405, 5703, 6009
Offset: 1
Examples
a(1)=15; indeed K(1,1) is the 1-edge graph; the Mycielski construction yields the cycle C(5); its Wiener index is 5*1 + 5*2 = 15.
References
- D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.
Links
- H. P. Patil and R. Pandiya Raj, On the total graph of Mycielski graphs, central graphs and their covering numbers, Discussiones Mathematicae Graph Theory, Vol. 33 (2013), pp. 361-371.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A228319.
Programs
-
Maple
a := proc (n) options operator, arrow: 4*n^2+6*n+5 end proc; seq(a(n), n = 1 .. 38);
-
Mathematica
LinearRecurrence[{3,-3,1},{15,33,59},50] (* Harvey P. Dale, Jan 13 2022 *)
-
PARI
a(n)=4*n^2+6*n+5 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 4*n^2 + 6*n + 5.
G.f.: x*(15-12*x+5*x^2)/(1-x)^3.
The Hosoya-Wiener polynomial is (4*n+1)*t + (2*n^2 + n + 2)*t^2.
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(4*x^2 + 10*x + 5) - 5.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)