A228334 Triangle read by rows: the X-transformation of the Catalan triangle A033184.
1, 0, 1, 0, 3, 1, 0, 14, 10, 1, 0, 84, 90, 21, 1, 0, 594, 825, 308, 36, 1, 0, 4719, 7865, 4004, 780, 55, 1, 0, 40898, 78078, 49686, 13650, 1650, 78, 1, 0, 379236, 804440, 606424, 214200, 37400, 3094, 105, 1, 0, 3711916, 8565960, 7379904, 3162816, 724812, 88179, 5320, 136, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 3, 1; 0, 14, 10, 1; 0, 84, 90, 21, 1; 0, 594, 825, 308, 36, 1; ...
Links
- Fangfang Cai, Qing-Hu Hou, Yidong Sun, Arthur L.B. Yang, Combinatorial identities related to 2×2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018.
- Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv preprint arXiv:1305.2015 [math.CO], 2013.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
Programs
-
Mathematica
nn = 9; c[n_, k_] := Binomial[2n-k, n] (k+1)/(n+1); a[0, 0] = 1; a[n_, k_] := Table[c[n+k+i-1, 2k+j-1], {i, 1, 2}, {j, 1, 2}] // Det; Table[a[n, k], {n, 0, nn}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 12 2018 *)
-
PARI
C(n, k) = (k<=n)*binomial(2*n-k, n)*(k+1)/(n+1); aX(nn) = {for (n = 0, nn, for (k = 0, n, print1(matdet(matrix(2, 2, i, j, C(n+k+i-1, 2*k+j-1))), ", ");); print(););} \\ Michel Marcus, Feb 13 2014
Extensions
More terms from Michel Marcus, Feb 13 2014
A-number for Catalan triangle changed by Michel Marcus, Feb 13 2014
Comments