cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228349 Triangle read by rows: T(j,k) is the k-th part in nondecreasing order of the j-th region of the set of compositions (ordered partitions) of n in colexicographic order, if 1<=j<=2^(n-1) and 1<=k<=A006519(j).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 4, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 4, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2013

Keywords

Comments

Triangle read by rows in which row n lists the A006519(n) elements of the row A001511(n) of triangle A090996, n >= 1.
The equivalent sequence for partitions is A220482.

Examples

			----------------------------------------------------------
.             Diagram                Triangle
Compositions    of            of compositions (rows)
of 5          regions          and regions (columns)
----------------------------------------------------------
.            _ _ _ _ _
5           |_        |                                 5
1+4         |_|_      |                               1 4
2+3         |_  |     |                             2   3
1+1+3       |_|_|_    |                           1 1   3
3+2         |_    |   |                         3       2
1+2+2       |_|_  |   |                       1 2       2
2+1+2       |_  | |   |                     2   1       2
1+1+1+2     |_|_|_|_  |                   1 1   1       2
4+1         |_      | |                 4               1
1+3+1       |_|_    | |               1 3               1
2+2+1       |_  |   | |             2   2               1
1+1+2+1     |_|_|_  | |           1 1   2               1
3+1+1       |_    | | |         3       1               1
1+2+1+1     |_|_  | | |       1 2       1               1
2+1+1+1     |_  | | | |     2   1       1               1
1+1+1+1+1   |_|_|_|_|_|   1 1   1       1               1
.
Written as an irregular triangle in which row n lists the parts of the n-th region the sequence begins:
1;
1,2;
1;
1,1,2,3;
1;
1,2;
1;
1,1,1,1,2,2,3,4;
1;
1,2;
1;
1,1,2,3;
1;
1,2;
1;
1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5;
...
Alternative interpretation of this sequence:
Triangle read by rows in which row r lists the regions of the last section of the set of compositions of r:
[1];
[1,2];
[1],[1,1,2,3];
[1],[1,2],[1],[1,1,1,1,2,2,3,4];
[1],[1,2],[1],[1,1,2,3],[1],[1,2],[1],[1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5];
		

Crossrefs

Main triangle: Right border gives A001511. Row j has length A006519(j). Row sums give A038712.

Programs

  • Mathematica
    Table[Map[Length@ TakeWhile[IntegerDigits[#, 2], # == 1 &] &, Range[2^(# - 1), 2^# - 1]] &@ IntegerExponent[2 n, 2], {n, 32}] // Flatten (* Michael De Vlieger, May 23 2017 *)