A228349 Triangle read by rows: T(j,k) is the k-th part in nondecreasing order of the j-th region of the set of compositions (ordered partitions) of n in colexicographic order, if 1<=j<=2^(n-1) and 1<=k<=A006519(j).
1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 4, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 4, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
---------------------------------------------------------- . Diagram Triangle Compositions of of compositions (rows) of 5 regions and regions (columns) ---------------------------------------------------------- . _ _ _ _ _ 5 |_ | 5 1+4 |_|_ | 1 4 2+3 |_ | | 2 3 1+1+3 |_|_|_ | 1 1 3 3+2 |_ | | 3 2 1+2+2 |_|_ | | 1 2 2 2+1+2 |_ | | | 2 1 2 1+1+1+2 |_|_|_|_ | 1 1 1 2 4+1 |_ | | 4 1 1+3+1 |_|_ | | 1 3 1 2+2+1 |_ | | | 2 2 1 1+1+2+1 |_|_|_ | | 1 1 2 1 3+1+1 |_ | | | 3 1 1 1+2+1+1 |_|_ | | | 1 2 1 1 2+1+1+1 |_ | | | | 2 1 1 1 1+1+1+1+1 |_|_|_|_|_| 1 1 1 1 1 . Written as an irregular triangle in which row n lists the parts of the n-th region the sequence begins: 1; 1,2; 1; 1,1,2,3; 1; 1,2; 1; 1,1,1,1,2,2,3,4; 1; 1,2; 1; 1,1,2,3; 1; 1,2; 1; 1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5; ... Alternative interpretation of this sequence: Triangle read by rows in which row r lists the regions of the last section of the set of compositions of r: [1]; [1,2]; [1],[1,1,2,3]; [1],[1,2],[1],[1,1,1,1,2,2,3,4]; [1],[1,2],[1],[1,1,2,3],[1],[1,2],[1],[1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5];
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..13312 (rows 1 <= n <= 2^11 = 2048).
Crossrefs
Programs
-
Mathematica
Table[Map[Length@ TakeWhile[IntegerDigits[#, 2], # == 1 &] &, Range[2^(# - 1), 2^# - 1]] &@ IntegerExponent[2 n, 2], {n, 32}] // Flatten (* Michael De Vlieger, May 23 2017 *)
Comments