cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228350 Triangle read by rows: T(j,k) is the k-th part in nonincreasing order of the j-th region of the set of compositions (ordered partitions) of n in colexicographic order, if 1<=j<=2^(n-1) and 1<=k<=A006519(j).

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 6, 5, 4, 4, 3, 3
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2013

Keywords

Comments

Triangle read by rows in which row n lists the A006519(n) elements of the row A001511(n) of triangle A065120, n >= 1.
The equivalent sequence for integer partitions is A206437.

Examples

			---------------------------------------------------------
.              Diagram                Triangle
Compositions     of            of compositions (rows)
.   of 5       regions          and regions (columns)
----------------------------------------------------------
.             _ _ _ _ _
.         5  |_        |                                5
.       1+4  |_|_      |                              1 4
.       2+3  |_  |     |                            2   3
.     1+1+3  |_|_|_    |                          1 1   3
.       3+2  |_    |   |                        3       2
.     1+2+2  |_|_  |   |                      1 2       2
.     2+1+2  |_  | |   |                    2   1       2
.   1+1+1+2  |_|_|_|_  |                  1 1   1       2
.       4+1  |_      | |                4               1
.     1+3+1  |_|_    | |              1 3               1
.     2+2+1  |_  |   | |            2   2               1
.   1+1+2+1  |_|_|_  | |          1 1   2               1
.     3+1+1  |_    | | |        3       1               1
.   1+2+1+1  |_|_  | | |      1 2       1               1
.   2+1+1+1  |_  | | | |    2   1       1               1
. 1+1+1+1+1  |_|_|_|_|_|  1 1   1       1               1
.
Also the structure could be represented by an isosceles triangle in which the n-th diagonal gives the n-th region. For the composition of 4 see below:
.             _ _ _ _
.         4  |_      |                  4
.       1+3  |_|_    |                1   3
.       2+2  |_  |   |              2       2
.     1+1+2  |_|_|_  |            1   1       2
.       3+1  |_    | |          3               1
.     1+2+1  |_|_  | |        1   2               1
.     2+1+1  |_  | | |      2       1               1
.   1+1+1+1  |_|_|_|_|    1   1       1               1
.
Illustration of the four sections of the set of compositions of 4:
.                                      _ _ _ _
.                                     |_      |     4
.                                     |_|_    |   1+3
.                                     |_  |   |   2+2
.                       _ _ _         |_|_|_  | 1+1+2
.                      |_    |   3          | |     1
.             _ _      |_|_  | 1+2          | |     1
.     _      |_  | 2       | |   1          | |     1
.    |_| 1     |_| 1       |_|   1          |_|     1
.
.
Illustration of initial terms. The parts of the eight regions of the set of compositions of 4:
--------------------------------------------------------
\j:  1      2    3        4     5      6    7          8
k
--------------------------------------------------------
.  _    _ _    _    _ _ _     _    _ _    _    _ _ _ _
1 |_|1 |_  |2 |_|1 |_    |3  |_|1 |_  |2 |_|1 |_      |4
2        |_|1        |_  |2         |_|1        |_    |3
3                      | |1                       |   |2
4                      |_|1                       |_  |2
5                                                   | |1
6                                                   | |1
7                                                   | |1
8                                                   |_|1
.
Triangle begins:
1;
2,1;
1;
3,2,1,1;
1;
2,1;
1;
4,3,2,2,1,1,1,1;
1;
2,1;
1;
3,2,1,1;
1;
2,1;
1;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
...
.
Also triangle read by rows T(n,m) in which row n lists the parts of the n-th section of the set of compositions of the integers >= n, ordered by regions. Row lengths give A045623. Row sums give A001792 (see below):
[1];
[2,1];
[1],[3,2,1,1];
[1],[2,1],[1],[4,3,2,2,1,1,1,1];
[1],[2,1],[1],[3,2,1,1],[1],[2,1],[1],[5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1];
		

Crossrefs

Formula

T(j,k) = A065120(A001511(j)),k) = A001511(j) - A029837(k), 1<=k<=A006519(j), j>=1.

A228347 Triangle of regions and compositions of the positive integers (see Comments lines for definition).

Original entry on oeis.org

1, 1, 2, 0, 0, 1, 1, 1, 2, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2013

Keywords

Comments

Triangle read by rows in which row n lists A129760(n) zeros followed by the A006519(n) elements of the row A001511(n) of triangle A090996, n >= 1.
The equivalent sequence for partitions is A186114.

Examples

			----------------------------------------------------------
.             Diagram                Triangle
Compositions    of            of compositions (rows)
of 5          regions          and regions (columns)
----------------------------------------------------------
.            _ _ _ _ _
5           |_        |                                 5
1+4         |_|_      |                               1 4
2+3         |_  |     |                             2 0 3
1+1+3       |_|_|_    |                           1 1 0 3
3+2         |_    |   |                         3 0 0 0 2
1+2+2       |_|_  |   |                       1 2 0 0 0 2
2+1+2       |_  | |   |                     2 0 1 0 0 0 2
1+1+1+2     |_|_|_|_  |                   1 1 0 1 0 0 0 2
4+1         |_      | |                 4 0 0 0 0 0 0 0 1
1+3+1       |_|_    | |               1 3 0 0 0 0 0 0 0 1
2+2+1       |_  |   | |             2 0 2 0 0 0 0 0 0 0 1
1+1+2+1     |_|_|_  | |           1 1 0 2 0 0 0 0 0 0 0 1
3+1+1       |_    | | |         3 0 0 0 1 0 0 0 0 0 0 0 1
1+2+1+1     |_|_  | | |       1 2 0 0 0 1 0 0 0 0 0 0 0 1
2+1+1+1     |_  | | | |     2 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1+1+1+1+1   |_|_|_|_|_|   1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
.
For the positive integer k consider the first 2^(k-1) rows of triangle, as shown below. The positive terms of the n-th row are the parts of the n-th region of the diagram of regions of the set of compositions of k. The positive terms of the n-th column are the parts of the n-th composition of k, with compositions in colexicographic order.
Triangle begins:
1;
1,2;
0,0,1;
1,1,2,3;
0,0,0,0,1;
0,0,0,0,1,2;
0,0,0,0,0,0,1;
1,1,1,1,2,2,3,4;
0,0,0,0,0,0,0,0,1;
0,0,0,0,0,0,0,0,1,2;
0,0,0,0,0,0,0,0,0,0,1;
0,0,0,0,0,0,0,0,1,1,2,3;
0,0,0,0,0,0,0,0,0,0,0,0,1;
0,0,0,0,0,0,0,0,0,0,0,0,1,2;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5;
...
		

Crossrefs

Mirror of A228348. Column 1 is A036987. Also column 1 gives A209229, n >= 1. Right border gives A001511. Positive terms give A228349.

A228348 Triangle of regions and compositions of the positive integers (see Comments lines for definition).

Original entry on oeis.org

1, 2, 1, 1, 0, 0, 3, 2, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Aug 21 2013

Keywords

Comments

Triangle read by rows in which row n lists the A006519(n) elements of the row A001511(n) of triangle A065120 followed by A129760(n) zeros, n >= 1.
The equivalent sequence for integer partitions is A193870.

Examples

			----------------------------------------------------------
.             Diagram                Triangle
Compositions    of            of compositions (rows)
of 5          regions          and regions (columns)
----------------------------------------------------------
.            _ _ _ _ _
5           |_        |                                 5
1+4         |_|_      |                               1 4
2+3         |_  |     |                             2 0 3
1+1+3       |_|_|_    |                           1 1 0 3
3+2         |_    |   |                         3 0 0 0 2
1+2+2       |_|_  |   |                       1 2 0 0 0 2
2+1+2       |_  | |   |                     2 0 1 0 0 0 2
1+1+1+2     |_|_|_|_  |                   1 1 0 1 0 0 0 2
4+1         |_      | |                 4 0 0 0 0 0 0 0 1
1+3+1       |_|_    | |               1 3 0 0 0 0 0 0 0 1
2+2+1       |_  |   | |             2 0 2 0 0 0 0 0 0 0 1
1+1+2+1     |_|_|_  | |           1 1 0 2 0 0 0 0 0 0 0 1
3+1+1       |_    | | |         3 0 0 0 1 0 0 0 0 0 0 0 1
1+2+1+1     |_|_  | | |       1 2 0 0 0 1 0 0 0 0 0 0 0 1
2+1+1+1     |_  | | | |     2 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1+1+1+1+1   |_|_|_|_|_|   1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
.
For the positive integer k consider the first 2^(k-1) rows of triangle, as shown below. The positive terms of the n-th row are the parts of the n-th region of the diagram of regions of the set of compositions of k. The positive terms of the n-th diagonal are the parts of the n-th composition of k, with compositions in colexicographic order.
Triangle begins:
1;
2,1;
1,0,0;
3,2,1,1;
1,0,0,0,0;
2,1,0,0,0,0;
1,0,0,0,0,0,0;
4,3,2,2,1,1,1,1;
1,0,0,0,0,0,0,0,0;
2,1,0,0,0,0,0,0,0,0;
1,0,0,0,0,0,0,0,0,0,0;
3,2,1,1,0,0,0,0,0,0,0,0;
1,0,0,0,0,0,0,0,0,0,0,0,0;
2,1,0,0,0,0,0,0,0,0,0,0,0,0;
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
...
		

Crossrefs

Mirror of A228347. Column 1 is A001511. Right border gives A036987. Also right border gives A209229, n >= 1. Positive terms give A228350.
Showing 1-3 of 3 results.