cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228494 The number of 3-length segments in all possible covers of L-length line by these segments with allowed gaps < 3.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 7, 12, 17, 24, 36, 54, 77, 108, 155, 222, 312, 436, 612, 858, 1194, 1656, 2298, 3184, 4397, 6060, 8346, 11480, 15762, 21612, 29607, 40518, 55385, 75632, 103197, 140692, 191647, 260856, 354814, 482290, 655131, 889364, 1206649, 1636218
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 23 2013

Keywords

Comments

Related with the number of all possible covers of L-length line segment by 3-length line segments with allowed gaps < 3 (A228362).

Crossrefs

Programs

  • Mathematica
    c[k_, l_, m_] :=  Sum[(-1)^i Binomial[k - 1 - i*l, m - 1] Binomial[m, i], {i, 0,     Floor[(k - m)/l]}]; a[L_, l_, m_] :=  Sum[Binomial[m + 1, m + 1 - j]*c[L - l*m, l - 1, j], {j, 0, m + 1}]; sa[L_, l_] := Sum[j*a[L, l, j], {j, 1, Ceiling[L/l]}];Table[sa[j, 3], {j, 0, 100}]
    CoefficientList[Series[x^3(x^2+x+1)^2/(x^5+x^4+x^3-1)^2,{x, 0, 100}], x]
    LinearRecurrence[{0,0,2,2,2,-1,-2,-3,-2,-1},{0,0,0,1,2,3,4,7,12,17},50] (* Harvey P. Dale, May 21 2025 *)
  • PARI
    concat([0,0,0], Vec(x^3*(x^2+x+1)^2/((x^2+1)*(x^3+x^2-1))^2+O(x^66))) \\ Joerg Arndt, Aug 23 2013

Formula

G.f.: x^3*(x^2+x+1)^2/((x^2+1)*(x^3+x^2-1))^2.