cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A339307 Numbers k such that A228553(k) is prime.

Original entry on oeis.org

11, 20, 24, 27, 32, 35, 37, 38, 68, 74, 78, 79, 82, 96, 98, 101, 103, 122, 137, 149, 161, 188, 209, 218, 239, 249, 258, 276, 293, 321, 325, 333, 363, 365, 372, 433, 445, 449, 499, 535, 567, 568, 580, 588, 594, 595, 622, 644, 656, 663, 666, 682, 688, 693, 721, 742, 754, 756, 760, 796, 814, 845
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 29 2020

Keywords

Examples

			a(3) = 24 is in the sequence because A228553(24) = 1987 is prime.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
      local S;
      S:= select(t -> isprime(t) and isprime(2*n-t), [seq(i,i=3..n,2)]);
      add(t*(2*n-t),t=S)
    end proc:
    f(2):= 4:
    select(isprime@f, [$1..1000]);

A339309 Numbers k such that A228553(k) is twice a prime.

Original entry on oeis.org

2, 5, 7, 8, 9, 10, 14, 16, 34, 53, 55, 83, 91, 140, 172, 180, 182, 187, 189, 242, 246, 254, 265, 288, 361, 398, 404, 421, 435, 490, 508, 559, 574, 623, 706, 727, 736, 747, 770, 773, 777, 984, 985, 1065, 1093, 1106, 1125, 1187, 1245, 1256, 1287, 1341, 1346, 1361, 1372, 1381, 1449, 1467, 1573, 1596
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Nov 29 2020

Keywords

Examples

			a(3) = 7 is a term because A228553(7) = 82 = 2*41 and 41 is prime.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
      local S;
      S:= select(t -> isprime(t) and isprime(2*n-t), [seq(i, i=3..n, 2)]);
      add(t*(2*n-t), t=S)
    end proc:
    f(2):= 4:
    filter:= proc(t) local v; v:= f(t); v::even and isprime(v) end proc:
    select(filter, [$1..2000]);

A350455 T(n,k) is the k-th semiprime whose sum of prime factors equals 2n, triangle T(n,k), n>=2, 1<=k<=A045917(n), read by rows.

Original entry on oeis.org

4, 9, 15, 21, 25, 35, 33, 49, 39, 55, 65, 77, 51, 91, 57, 85, 121, 95, 119, 143, 69, 133, 169, 115, 187, 161, 209, 221, 87, 247, 93, 145, 253, 289, 155, 203, 299, 323, 217, 361, 111, 319, 391, 185, 341, 377, 437, 123, 259, 403, 129, 205, 493, 529, 215, 287, 407
Offset: 2

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Comments

Assuming Goldbach's conjecture, no row is empty.

Examples

			Triangle T(n,k) begins:
    4;
    9;
   15;
   21,  25;
   35     ;
   33,  49;
   39,  55;
   65,  77;
   51,  91;
   57,  85, 121;
   95, 119, 143;
   69, 133, 169;
  115, 187     ;
  161, 209, 221;
   87, 247     ;
   93, 145, 253, 289;
  155, 203, 299, 323;
  ...
		

Crossrefs

Column k=1 gives A073046.
Last elements of rows give A102084.
Row sums give A228553.
Row products give A337568.
Row lengths give A045917.

Programs

  • Maple
    T:= n-> seq(`if`(andmap(isprime, [h, 2*n-h]), h*(2*n-h), [][]), h=2..n):
    seq(T(n), n=2..30);
Showing 1-3 of 3 results.