A228565 Triangle read by rows: coefficients of descending powers of the polynomial V(n,x) = cos((2n+1)(arccos(x)/2))/cos(arccos(x)/2), n >= 0.
1, 2, -1, 4, -2, -1, 8, -4, -4, 1, 16, -8, -12, 4, 1, 32, -16, -32, 12, 6, -1, 64, -32, -80, 32, 24, -6, -1, 128, -64, -192, 80, 80, -24, -8, 1, 256, -128, -448, 192, 240, -80, -40, 8, 1, 512, -256, -1024, 448, 672, -240, -160, 40, 10, -1, 1024, -512, -2304, 1024, 1792, -672, -560, 160, 60, -10, -1, 2048, -1024, -5120, 2304, 4608, -1792, -1792, 560, 280, -60, -12, 1, 4096, -2048, -11264, 5120, 11520, -4608, -5376, 1792, 1120, -280, -84, 12, 1
Offset: 0
Examples
V(0,x) = 1, V(1,x) = 2x-1, V(2,x) = 4x^2-2x-1, V(3,x) = 8x^3 -4x^2 - 4x + 1, V(4,x) = 16x^4 - 8x^3 - 12x^2 + 4x + 1, V(5,x) = 32x^5 - 16x^4 - 32x^3 + 12x^2 + 6x - 1, V(6,x) =64x^6 - 32x^5 - 80x^4 + 32x^3 + 24x^2 - 6x - 1, ... Triangle begins: 1; 2, -1; 4, -2, -1; 8, -4, -4, 1; 16, -8, -12, 4, 1; 32, -16, -32, 12, 6, -1; 64, -32, -80, 32, 24, -6, -1; 128, -64, -192, 80, 80, -24, -8, 1; 256, -128, -448, 192, 240, -80, -40, 8, 1; 512, -256, -1024, 448, 672, -240, -160, 40, 10, -1; 1024, -512, -2304, 1024, 1792, -672, -560, 160, 60, -10, -1; ...
References
- J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, 2002.
Links
- Paul Barry, On the Group of Almost-Riordan Arrays, arXiv preprint arXiv:1606.05077 [math.CO], 2016.
Programs
-
Maple
A228565 := proc(n,k) local t,Vn,x ; t := arccos(x) ; Vn := cos((n+1/2)*t)/cos(t/2) ; coeftayl(%,x=0,n-k) ; end proc: for n from 0 to 10 do for k from 0 to n do printf("%d,",A228565(n,k)) ; end do: printf("\n") ; end do: # R. J. Mathar, Mar 12 2014
-
Mathematica
V[n_] := Cos[(2*n + 1)*(ArcCos[x]/2)]/Cos[ArcCos[x]/2]; row[n_] := CoefficientList[V[n] + O[x]^(n + 1), x] // Reverse; Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 20 2017 *)
Formula
V(n+1,x) = 2xV(n,x) - V(n-1,x) with V(0,x) = 1, V(1,x) = 2x-1.
From Peter Bala, Jan 17 2014: (Start)
O.g.f. (1 - t)/(1 - 2*x*t + t^2) = 1 + (2*x - 1)*t +(4*x^2 - 2*x - 1)*t^2 + ....
In terms of the Chebyshev polynomials T(n,x) of the first kind and Chebyshev polynomials U(n,x) of the second kind we have
V(n,x) = U(n,x) - U(n-1,x);
V(n,x) + V(n-1,x) = 2*T(n,x);
V(n,x) = 1/u*T(2*n+1,u) with u = sqrt((1 + x)/2).
Also binomial(2*n,n)*V(n,x) = 2^(2*n)*Jacobi_P(n,-1/2,1/2,x). (End)
Comments