cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228565 Triangle read by rows: coefficients of descending powers of the polynomial V(n,x) = cos((2n+1)(arccos(x)/2))/cos(arccos(x)/2), n >= 0.

Original entry on oeis.org

1, 2, -1, 4, -2, -1, 8, -4, -4, 1, 16, -8, -12, 4, 1, 32, -16, -32, 12, 6, -1, 64, -32, -80, 32, 24, -6, -1, 128, -64, -192, 80, 80, -24, -8, 1, 256, -128, -448, 192, 240, -80, -40, 8, 1, 512, -256, -1024, 448, 672, -240, -160, 40, 10, -1, 1024, -512, -2304, 1024, 1792, -672, -560, 160, 60, -10, -1, 2048, -1024, -5120, 2304, 4608, -1792, -1792, 560, 280, -60, -12, 1, 4096, -2048, -11264, 5120, 11520, -4608, -5376, 1792, 1120, -280, -84, 12, 1
Offset: 0

Views

Author

Jonny Griffiths, Aug 25 2013

Keywords

Comments

V(n,x) is related to the Dirichlet kernel and its associated polynomials. V(n,x) arises in studying recurrences connecting the Chebyshev polynomials of the first and second kinds. It differs from A180870 above only in the signs of terms.
Chebyshev polynomials V(n,x) of the third kind (see, for example, Mason and Handscomb, Chapter 1, Definition 1.3). See A180870 for Chebyshev polynomials of the fourth kind. Cf. A155751. - Peter Bala, Jan 17 2014

Examples

			V(0,x) = 1, V(1,x) = 2x-1, V(2,x) = 4x^2-2x-1, V(3,x) = 8x^3 -4x^2 - 4x + 1, V(4,x) = 16x^4 - 8x^3 - 12x^2 + 4x + 1, V(5,x) = 32x^5 - 16x^4 - 32x^3 + 12x^2 + 6x - 1, V(6,x) =64x^6 - 32x^5 - 80x^4 + 32x^3 + 24x^2 - 6x - 1, ...
Triangle begins:
     1;
     2,   -1;
     4,   -2,    -1;
     8,   -4,    -4,    1;
    16,   -8,   -12,    4,    1;
    32,  -16,   -32,   12,    6,   -1;
    64,  -32,   -80,   32,   24,   -6,   -1;
   128,  -64,  -192,   80,   80,  -24,   -8,   1;
   256, -128,  -448,  192,  240,  -80,  -40,   8,   1;
   512, -256, -1024,  448,  672, -240, -160,  40,  10,  -1;
  1024, -512, -2304, 1024, 1792, -672, -560, 160,  60, -10,  -1;
  ...
		

References

  • J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, 2002.

Crossrefs

Programs

  • Maple
    A228565 := proc(n,k)
        local t,Vn,x ;
        t := arccos(x) ;
        Vn := cos((n+1/2)*t)/cos(t/2) ;
        coeftayl(%,x=0,n-k) ;
    end proc:
    for n from 0 to 10 do
        for k from 0 to n do
            printf("%d,",A228565(n,k)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Mar 12 2014
  • Mathematica
    V[n_] := Cos[(2*n + 1)*(ArcCos[x]/2)]/Cos[ArcCos[x]/2];
    row[n_] := CoefficientList[V[n] + O[x]^(n + 1), x] // Reverse;
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 20 2017 *)

Formula

V(n+1,x) = 2xV(n,x) - V(n-1,x) with V(0,x) = 1, V(1,x) = 2x-1.
From Peter Bala, Jan 17 2014: (Start)
O.g.f. (1 - t)/(1 - 2*x*t + t^2) = 1 + (2*x - 1)*t +(4*x^2 - 2*x - 1)*t^2 + ....
In terms of the Chebyshev polynomials T(n,x) of the first kind and Chebyshev polynomials U(n,x) of the second kind we have
V(n,x) = U(n,x) - U(n-1,x);
V(n,x) + V(n-1,x) = 2*T(n,x);
V(n,x) = 1/u*T(2*n+1,u) with u = sqrt((1 + x)/2).
Also binomial(2*n,n)*V(n,x) = 2^(2*n)*Jacobi_P(n,-1/2,1/2,x). (End)