A228581 The number of binary pattern classes in the (2,n)-rectangular grid with 6 '1's and (2n-6) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
0, 0, 0, 1, 10, 60, 246, 777, 2044, 4704, 9780, 18777, 33814, 57772, 94458, 148785, 226968, 336736, 487560, 690897, 960450, 1312444, 1765918, 2343033, 3069396, 3974400, 5091580, 6458985, 8119566, 10121580, 12519010, 15372001, 18747312, 22718784, 27367824, 32783905
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A226048.
Programs
-
Magma
[(1/4)*(Binomial(2*n,6) + 3*Binomial(n,3)): n in [0..50]]; // Vincenzo Librandi, Sep 04 2013
-
Mathematica
CoefficientList[Series[x^3 (1 + 3 x + 11 x^2 + x^3) / (1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 04 2013 *)
-
R
a <- 0 for(n in 1:40) a[n+1] <- (1/4)*(choose(2*n, 6) + 3*choose(n,3)) a
Formula
a(n) = (1/4)*( binomial(2*n,6) + 3*binomial(n,3) ).
a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7) with n>6, a(0)=a(1)=a(2)=0, a(3)=1, a(4)=10, a(5)=60, a(6)=246.
G.f.: x^3*(1+3*x+11*x^2+x^3)/(1-x)^7. [Bruno Berselli, Aug 27 2013]
Extensions
More terms from Vincenzo Librandi, Sep 04 2013
Comments