cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228581 The number of binary pattern classes in the (2,n)-rectangular grid with 6 '1's and (2n-6) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

0, 0, 0, 1, 10, 60, 246, 777, 2044, 4704, 9780, 18777, 33814, 57772, 94458, 148785, 226968, 336736, 487560, 690897, 960450, 1312444, 1765918, 2343033, 3069396, 3974400, 5091580, 6458985, 8119566, 10121580, 12519010, 15372001, 18747312, 22718784, 27367824, 32783905
Offset: 0

Views

Author

Keywords

Comments

Column 6 of A226048.

Crossrefs

Cf. A226048.

Programs

  • Magma
    [(1/4)*(Binomial(2*n,6) + 3*Binomial(n,3)): n in [0..50]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    CoefficientList[Series[x^3 (1 + 3 x + 11 x^2 + x^3) / (1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 04 2013 *)
  • R
    a <- 0
        for(n in 1:40) a[n+1] <- (1/4)*(choose(2*n, 6) + 3*choose(n,3))     a
    

Formula

a(n) = (1/4)*( binomial(2*n,6) + 3*binomial(n,3) ).
a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7) with n>6, a(0)=a(1)=a(2)=0, a(3)=1, a(4)=10, a(5)=60, a(6)=246.
G.f.: x^3*(1+3*x+11*x^2+x^3)/(1-x)^7. [Bruno Berselli, Aug 27 2013]

Extensions

More terms from Vincenzo Librandi, Sep 04 2013