A228582 The number of binary pattern classes in the (2,n)-rectangular grid with 7 '1's and (2n-7) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
0, 0, 0, 0, 2, 32, 198, 868, 2860, 7984, 19380, 42696, 86526, 164560, 296010, 509132, 841464, 1345184, 2086920, 3155472, 4660890, 6745152, 9580142, 13381940, 18407268, 24972112, 33446140, 44276440, 57979350, 75170160, 96551730
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A226048.
Programs
-
Mathematica
CoefficientList[Series[2 x^4 (2 x^7 + 7 x^6 + 48 x^5 + 67 x^4 + 82 x^3 + 37 x^2 + 12 x + 1) / ((x + 1)^4 (x - 1)^8), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 27 2013 *)
-
R
a <- 0 for(n in 1:40) a[n+1] <- (1/4)*(choose(2*(n+2), 7) + 2*choose(n+1, 3)*(1/2)*(1-(-1)^n)) a
Formula
a(n) = (1/4)*(binomial(2*n, 7) + 2*binomial(n-1, 3)*(1/2)*(1-(-1)^n)) = (n-3)*(n-2)*(n-1)(2*n*(2n-5)*(2*n-3)*(2*n-1)-105*(-1)^n+105)/2520.
G.f.: 2*x^4*(2*x^7 +7*x^6 +48*x^5 +67*x^4 +82*x^3 +37*x^2 +12*x +1) / ((x+1)^4*(x-1)^8). [Bruno Berselli, Aug 27 2013]
Extensions
Formula adapted to the offset from Bruno Berselli, Aug 27 2013
Comments