A228602 a(1) = 17, a(2) = 80, a(n) = 4*(a(n-1) + a(n-2)) for n >= 3.
17, 80, 388, 1872, 9040, 43648, 210752, 1017600, 4913408, 23724032, 114549760, 553095168, 2670579712, 12894699520, 62261116928, 300623265792, 1451537530880, 7008643186688, 33840722870272, 163397464227840, 788952748392448, 3809400850481152
Offset: 1
References
- R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989. pp. 161-162.
Links
- H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quarterly, 20, 1982, 16-21.
- Eric Weisstein's World of Mathematics, Alkane Graph
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set
- Index entries for linear recurrences with constant coefficients, signature (4,4).
Programs
-
Maple
a := proc (n) if n = 1 then 17 elif n = 2 then 80 else 4*a(n-1)+4*a(n-2) end if end proc: seq(a(n), n = 1 .. 25);
-
Mathematica
LinearRecurrence[{4, 4}, {17, 80}, 20] (* Eric W. Weisstein, Jul 15 2021 *) CoefficientList[Series[(17 + 12 x)/(1 - 4 x - 4 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 15 2021 *) Table[((12 - 11 Sqrt[2]) (2 - 2 Sqrt[2])^n + (2 (1 + Sqrt[2]))^n (12 + 11 Sqrt[2]))/8, {n, 20}] // Expand (* Eric W. Weisstein, Jul 15 2021 *)
Formula
a(n) = (1/8)*(12-11*sqrt(2))*(2-2*sqrt(2))^n + (1/8)*(12+11*sqrt(2))*(2+2*sqrt(2))^n.
G.f.: x*(17+12*x)/(1-4*x-4*x^2).
Comments