A347478
Number of total dominating sets in the n-alkane graph.
Original entry on oeis.org
15, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664, 281474976710656, 1125899906842624
Offset: 1
A347501
Number of dominating sets in the n-alkane graph.
Original entry on oeis.org
17, 81, 405, 2025, 10125, 50625, 253125, 1265625, 6328125, 31640625, 158203125, 791015625, 3955078125, 19775390625, 98876953125, 494384765625, 2471923828125, 12359619140625, 61798095703125, 308990478515625, 1544952392578125, 7724761962890625
Offset: 1
-
Join[{17}, LinearRecurrence[{5}, {81}, 20]]
CoefficientList[Series[(4 x - 17)/(5 x - 1), {x, 0, 20}], x]
A228603
a(1) = 9, a(2) = 44, a(n) = 4*(a(n-1) + a(n-2)) (n >=3).
Original entry on oeis.org
9, 44, 212, 1024, 4944, 23872, 115264, 556544, 2687232, 12975104, 62649344, 302497792, 1460588544, 7052345344, 34051735552, 164416323584, 793872236544, 3833154240512, 18508105908224, 89365040594944, 431492586012672, 2083430506430464, 10059692369772544
Offset: 1
- R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989. pp. 161-162.
-
a := proc (n) if n = 1 then 9 elif n = 2 then 44 else 4*a(n-1)+4*a(n-2) end if end proc: seq(a(n), n = 1 .. 25);
-
LinearRecurrence[{4,4},{9,44},30] (* Harvey P. Dale, Oct 30 2016 *)
Showing 1-3 of 3 results.
Comments