cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A228696 Number of labeled graphs on n nodes with degree set {2,4}, with multiple edges and loops allowed.

Original entry on oeis.org

1, 2, 9, 65, 751, 13044, 320803, 10609256, 453774440, 24375801464, 1607240682376, 127684970262822, 12034618723574314, 1328262275098167080, 169754658940294717086, 24877923644434862091314, 4145248921431765036724198, 779383143209936088442516156, 164246020015613168238167009350
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2013

Keywords

Crossrefs

Cf. A228697.

Programs

  • Mathematica
    max = 20; f[x_] := Sum[a[n]*(x^n/n!), {n, 0, max}]; a[0] = 1; a[1] = 2; coef = CoefficientList[-16*(x - 2)^2* x^2*(x + 1)^2*(x^5 - 2*x^4 + 2*x^3 - 2*x^2 + 12*x + 4)*f''[x] + 4*(x^13 - 4*x^12 - 6*x^11 + 36*x^10 - 6*x^9 + 24*x^8 - 352*x^7 + 380*x^6 + 152*x^5 + 2104*x^4 - 1472*x^3 - 688*x^2 + 256*x + 96)* f'[x] + (-x^14 + 6*x^13 + 2*x^12 - 76*x^11 + 112*x^10 + 96*x^9 + 356*x^8 - 1320*x^7 - 568*x^6 + 768*x^5 + 9248*x^4 + 12224*x^3 - 2496*x^2 - 3968*x - 768)*f[x], x]; Table[a[n], {n, 0, max}] /. Solve[Thread[coef[[2 ;; max]] == 0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *)

Formula

See Goulden-Jackson for the e.g.f.
Recurrence (for n>11): 96*(2*n^5 - 8*n^4 - 3*n^3 + 22*n^2 + 69*n - 88)*a(n) = 32*(4*n^7 - 26*n^6 + 34*n^5 + 29*n^4 + 121*n^3 - 554*n^2 + 350*n + 6)*a(n-1) + 32*(n-1)*(4*n^7 + 10*n^6 - 90*n^5 - 130*n^4 + 705*n^3 + 587*n^2 - 1286*n + 26)*a(n-2) - 16*(n-2)*(n-1)*(6*n^7 + 2*n^6 - 151*n^5 - 13*n^4 + 687*n^3 + 1225*n^2 - 2200*n - 64)*a(n-3) - 8*(n-3)*(n-2)*(n-1)*(8*n^7 - 34*n^6 + 96*n^5 + 43*n^4 - 480*n^3 + 249*n^2 + 1524*n - 208)*a(n-4) + 8*(n-4)*(n-3)*(n-2)*(n-1)*(4*n^7 - 58*n^6 + 98*n^5 + 417*n^4 - 621*n^3 - 2092*n^2 + 2042*n + 106)*a(n-5) + 8*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(12*n^6 - 52*n^5 - 167*n^4 + 453*n^3 + 850*n^2 - 1894*n + 58)*a(n-6) + 2*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(8*n^6 + 6*n^5 - 12*n^4 - 11*n^3 - 306*n^2 + 1325*n - 160)*a(n-7) - 2*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(4*n^6 - 16*n^5 - 42*n^4 + 112*n^3 + 340*n^2 - 633*n + 38)*a(n-8) - 2*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(4*n^5 + 2*n^4 - 28*n^3 - 14*n^2 + 54*n + 5)*a(n-9) + (n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(2*n^5 + 2*n^4 - 15*n^3 - 15*n^2 + 82*n - 6)*a(n-10). - Vaclav Kotesovec, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Sep 15 2014

A333158 Irregular triangle read by rows: T(n,k) is the number of k-regular graphs on n labeled nodes with loops allowed, n >= 1, 0 <= k <= n + 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 3, 8, 8, 3, 1, 1, 0, 38, 0, 38, 0, 1, 1, 15, 208, 730, 730, 208, 15, 1, 1, 0, 1348, 0, 20670, 0, 1348, 0, 1, 1, 105, 10126, 188790, 781578, 781578, 188790, 10126, 105, 1, 1, 0, 86174, 0, 37885204, 0, 37885204, 0, 86174, 0, 1
Offset: 1

Views

Author

Andrew Howroyd, Mar 09 2020

Keywords

Comments

A loop adds 2 to the degree of its vertex.

Examples

			Triangle begins:
  1,   0,     1;
  1,   1,     1,      1;
  1,   0,     2,      0,      1;
  1,   3,     8,      8,      3,      1;
  1,   0,    38,      0,     38,      0,      1;
  1,  15,   208,    730,    730,    208,     15,     1;
  1,   0,  1348,      0,  20670,      0,   1348,     0,   1;
  1, 105, 10126, 188790, 781578, 781578, 188790, 10126, 105, 1;
  ...
		

Crossrefs

Row sums are A322635.
Columns k=0..4 are A000012, A123023, A108246, A110039 (with interspersed zeros), A228697.

Formula

T(n,k) = T(n, n+1-k).
Showing 1-2 of 2 results.