cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228706 Expansion of (1 - 3*x + 5*x^2 - 3*x^3 + x^4)/((1-x)^4*(1+x^2)^2).

Original entry on oeis.org

1, 1, 1, 5, 11, 14, 18, 30, 45, 55, 67, 91, 119, 140, 164, 204, 249, 285, 325, 385, 451, 506, 566, 650, 741, 819, 903, 1015, 1135, 1240, 1352, 1496, 1649, 1785, 1929, 2109, 2299, 2470, 2650, 2870, 3101, 3311, 3531, 3795, 4071, 4324, 4588, 4900, 5225, 5525
Offset: 0

Views

Author

N. J. A. Sloane, Sep 06 2013

Keywords

Comments

A159914 and A228705 both satisfy the same recurrence relation, and both count (n-3)-element subsets of {1..n} having even resp. odd sum. Is there a similar subset-counting interpretation for this sequence? - M. F. Hasler, Jun 22 2018

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1-3*x+5*x^2-3*x^3+x^4)/((1-x)^4*(1+x^2)^2)); // Vincenzo Librandi, Sep 07 2013
    
  • Mathematica
    CoefficientList[Series[(1 - 3 x + 5 x^2 - 3 x^3 + x^4) / ((1 - x)^4 (1 + x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 07 2013 *)
  • PARI
    Vec((1-3*x+5*x^2-3*x^3+x^4)/((1-x)^4*(1+x^2)^2)+O(x^99)) \\ M. F. Hasler, Jun 22 2018

Formula

a(n) = (n+2)*(2*(n+1)*(n+3)+9*(1+(-1)^n)*i^(n*(n+1)))/48, where i=sqrt(-1). [Bruno Berselli, Sep 07 2013]