cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187800 Number T(n,k,r,u) of dissections of an n X k X r rectangular cuboid on a unit cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0 read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 8, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 1, 6, 4, 1, 12, 16, 0, 0, 0, 0, 0, 2, 1, 1, 9, 16, 8, 1, 1, 18, 64, 64, 16, 0, 0, 0, 4, 1, 27, 193, 544, 707, 454, 142, 20, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Row lengths are specified in A228726.

Examples

			T(4,3,2,2) = 4 because the 4 X 3 X 2 rectangular cuboid can be dissected in 4 distinct ways in which there are 2 nodes unconnected to any of their neighbors. The dissections and isolated nodes can be illustrated by expanding into 2 dimensions:
._______.    ._______.    ._______.
|   |   |    | . | . |    |   |   |
|___|___|    |___|___|    |___|___|
|_|_|_|_|    |_|_|_|_|    |_|_|_|_|
._______.    ._______.    ._______.
|   |_|_|    | . |_|_|    |   |_|_|
|___|   |    |___| . |    |___|   |
|_|_|___|    |_|_|___|    |_|_|___|
._______.    ._______.    ._______.
|_|_|   |    |_|_| . |    |_|_|   |
|   |___|    | . |___|    |   |___|
|___|_|_|    |___|_|_|    |___|_|_|
._______.    ._______.    ._______.
|_|_|_|_|    |_|_|_|_|    |_|_|_|_|
|   |   |    | . | . |    |   |   |
|___|___|    |___|___|    |___|___|
.
The irregular triangle begins:
      u 0   1   2   3   4   5   6   7   8   9  10  11  12 ...
n k r
1,1,1   1
2,1,1   1
2,2,1   1
2,2,2   1   1
3,1,1   1
3,2,1   1
3,2,2   1   2
3,3,1   1
3,3,2   1   4
3,3,3   1   8   0   0   0   0   0   0   1
4,1,1   1
4,2,1   1
4,2,2   1   3   1
4,3,1   1
4,3,2   1   6   4
4,3,3   1  12  16   0   0   0   0   0   2
4,4,1   1
4,4,2   1   9  16   8   1
4,4,3   1  18  64  64  16   0   0   0   4
4,4,4   1  27 193 544 707 454 142  20   9   0   0   0   0 ...
		

Crossrefs

Row sums = A228267(n,k,r).
Cf. A225777.

A228594 Triangle T(n,k,r,u) read by rows: number of partitions of an n X k X r rectangular cuboid on a cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Row lengths are specified in A228726.

Examples

			T(4,4,4,8) = 2 because the 4 X 4 X 4 rectangular cuboid (in this case a cube) has 2 partitions in which there are 8 nodes unconnected to any of their neighbors.  The partitions are (8 2 X 2 X 2 cubes) and (37 1 X 1 X 1 cubes and 1 3 X 3 X 3 cube).  The partitions and isolated nodes can be illustrated by expanding into 2 dimensions:
._______.    ._______.    ._______.    ._______.    ._______.
|   |   |    | . | . |    |   |   |    | . | . |    |   |   |
|___|___|    |___|___|    |___|___|    |___|___|    |___|___|
|   |   |    | . | . |    |   |   |    | . | . |    |   |   |
|___|___|    |___|___|    |___|___|    |___|___|    |___|___|
._______.    ._______.    ._______.    ._______.    ._______.
|     |_|    | . . |_|    | . . |_|    |     |_|    |_|_|_|_|
|     |_|    | . . |_|    | . . |_|    |     |_|    |_|_|_|_|
|_____|_|    |_____|_|    |_____|_|    |_____|_|    |_|_|_|_|
|_|_|_|_|    |_|_|_|_|    |_|_|_|_|    |_|_|_|_|    |_|_|_|_|
.
The irregular triangle begins:
      u 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 ...
n k r
1,1,1   1
2,1,1   1
2,2,1   1
2,2,2   1  1
3,1,1   1
3,2,1   1
3,2,2   1  1
3,3,1   1
3,3,2   1  1
3,3,3   1  1  0  0  0  0  0  0  1
4,1,1   1
4,2,1   1
4,2,2   1  1  1
4,3,1   1
4,3,2   1  1  1
4,3,3   1  1  1  0  0  0  0  0  1
4,4,1   1
4,4,2   1  1  1  1  1
4,4,3   1  1  1  1  1  0  0  0  1
4,4,4   1  1  1  1  1  1  1  1  2  0  0  0  0  0  0  0  0 ...
5,1,1   1
5,2,1   1
5,2,2   1  1  1
5,3,1   1
5,3,2   1  1  1
5,3,3   1  1  1  0  0  0  0  0  1  1
5,4,1   1
5,4,2   1  1  1  1  1
5,4,3   1  1  1  1  1  0  0  0  1  1  1
5,4,4   1  1  1  1  1  1  1  1  2  1  1  1  1  0  0  0  0 ...
5,5,1   1
5,5,2   1  1  1  1  1
5,5,3   1  1  1  1  1  0  0  0  1  1  1  1
5,5,4   1  1  1  1  1  1  1  1  2  1  1  1  1  1  1  0  0 ...
		

Crossrefs

Row sums = A228202(n,k,r).
Cf. A225542.
Showing 1-2 of 2 results.