A187800
Number T(n,k,r,u) of dissections of an n X k X r rectangular cuboid on a unit cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0 read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 8, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 1, 6, 4, 1, 12, 16, 0, 0, 0, 0, 0, 2, 1, 1, 9, 16, 8, 1, 1, 18, 64, 64, 16, 0, 0, 0, 4, 1, 27, 193, 544, 707, 454, 142, 20, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
T(4,3,2,2) = 4 because the 4 X 3 X 2 rectangular cuboid can be dissected in 4 distinct ways in which there are 2 nodes unconnected to any of their neighbors. The dissections and isolated nodes can be illustrated by expanding into 2 dimensions:
._______. ._______. ._______.
| | | | . | . | | | |
|___|___| |___|___| |___|___|
|_|_|_|_| |_|_|_|_| |_|_|_|_|
._______. ._______. ._______.
| |_|_| | . |_|_| | |_|_|
|___| | |___| . | |___| |
|_|_|___| |_|_|___| |_|_|___|
._______. ._______. ._______.
|_|_| | |_|_| . | |_|_| |
| |___| | . |___| | |___|
|___|_|_| |___|_|_| |___|_|_|
._______. ._______. ._______.
|_|_|_|_| |_|_|_|_| |_|_|_|_|
| | | | . | . | | | |
|___|___| |___|___| |___|___|
.
The irregular triangle begins:
u 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
n k r
1,1,1 1
2,1,1 1
2,2,1 1
2,2,2 1 1
3,1,1 1
3,2,1 1
3,2,2 1 2
3,3,1 1
3,3,2 1 4
3,3,3 1 8 0 0 0 0 0 0 1
4,1,1 1
4,2,1 1
4,2,2 1 3 1
4,3,1 1
4,3,2 1 6 4
4,3,3 1 12 16 0 0 0 0 0 2
4,4,1 1
4,4,2 1 9 16 8 1
4,4,3 1 18 64 64 16 0 0 0 4
4,4,4 1 27 193 544 707 454 142 20 9 0 0 0 0 ...
A228594
Triangle T(n,k,r,u) read by rows: number of partitions of an n X k X r rectangular cuboid on a cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors, considering only the number of parts; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
T(4,4,4,8) = 2 because the 4 X 4 X 4 rectangular cuboid (in this case a cube) has 2 partitions in which there are 8 nodes unconnected to any of their neighbors. The partitions are (8 2 X 2 X 2 cubes) and (37 1 X 1 X 1 cubes and 1 3 X 3 X 3 cube). The partitions and isolated nodes can be illustrated by expanding into 2 dimensions:
._______. ._______. ._______. ._______. ._______.
| | | | . | . | | | | | . | . | | | |
|___|___| |___|___| |___|___| |___|___| |___|___|
| | | | . | . | | | | | . | . | | | |
|___|___| |___|___| |___|___| |___|___| |___|___|
._______. ._______. ._______. ._______. ._______.
| |_| | . . |_| | . . |_| | |_| |_|_|_|_|
| |_| | . . |_| | . . |_| | |_| |_|_|_|_|
|_____|_| |_____|_| |_____|_| |_____|_| |_|_|_|_|
|_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|
.
The irregular triangle begins:
u 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
n k r
1,1,1 1
2,1,1 1
2,2,1 1
2,2,2 1 1
3,1,1 1
3,2,1 1
3,2,2 1 1
3,3,1 1
3,3,2 1 1
3,3,3 1 1 0 0 0 0 0 0 1
4,1,1 1
4,2,1 1
4,2,2 1 1 1
4,3,1 1
4,3,2 1 1 1
4,3,3 1 1 1 0 0 0 0 0 1
4,4,1 1
4,4,2 1 1 1 1 1
4,4,3 1 1 1 1 1 0 0 0 1
4,4,4 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0 ...
5,1,1 1
5,2,1 1
5,2,2 1 1 1
5,3,1 1
5,3,2 1 1 1
5,3,3 1 1 1 0 0 0 0 0 1 1
5,4,1 1
5,4,2 1 1 1 1 1
5,4,3 1 1 1 1 1 0 0 0 1 1 1
5,4,4 1 1 1 1 1 1 1 1 2 1 1 1 1 0 0 0 0 ...
5,5,1 1
5,5,2 1 1 1 1 1
5,5,3 1 1 1 1 1 0 0 0 1 1 1 1
5,5,4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 0 0 ...
Showing 1-2 of 2 results.
Comments