cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228769 The number of skew sum decomposable permutations which avoid the patterns 3124 and 4312.

Original entry on oeis.org

0, 1, 3, 10, 35, 129, 494, 1935, 7670, 30582, 122280, 489552, 1960956, 7855994, 31471731, 126063782, 504888839, 2021777865, 8094784697, 32405289263, 129709206465, 519129580361, 2077477804103, 8313000733125, 33261722967167, 133076495664483, 532391828669675, 2129796460981743, 8519701993370619, 34079469569317323
Offset: 1

Views

Author

Jay Pantone, Sep 08 2013

Keywords

Examples

			Example: a(4)=10 because there are 10 skew sum decomposable permutations of length 4 which avoid the patterns 3124 and 4312.
		

Crossrefs

The class of all permutations which avoid the patterns 3124 and 4312 is given by A165534.

Programs

  • Mathematica
    CoefficientList[Series[- (1/x) (3 x^4 - x^3 + Sqrt[-4 x + 1] (4 x^5 - 9 x^4 + 9 x^3 - 2 x^2)) / (12 x^4 - 31 x^3 + 27 x^2 + Sqrt[-4 x + 1] (4 x^4 - 13 x^3 + 15 x^2 - 7 x + 1) - 9 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 09 2013 *)

Formula

G.f.: -(3*x^4 - x^3 + sqrt(-4*x + 1)*(4*x^5 - 9*x^4 + 9*x^3 - 2*x^2))/(12*x^4 - 31*x^3 + 27*x^2 + sqrt(-4*x + 1)*(4*x^4 - 13*x^3 + 15*x^2 - 7*x + 1) - 9*x + 1).
a(n) ~ 4^(n-1)/9 * (1 + 1/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 18 2014