cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228771 The number of skew sum indecomposable permutations which avoid the patterns 3124 and 4312.

Original entry on oeis.org

1, 1, 3, 12, 53, 234, 1013, 4306, 18051, 74903, 308487, 1263393, 5152139, 20941298, 84897207, 343467388, 1387244237, 5595368133, 22543241377, 90739796783, 364954106877, 1466865660103, 5892463315373, 23658818086719, 94952826295865, 380947979933041, 1527871081396065, 6126157580638517, 24557525359295337, 98421154766829972
Offset: 1

Views

Author

Jay Pantone, Sep 08 2013

Keywords

Examples

			Example: a(4)=12 because there are 12 skew sum indecomposable permutations of length 4 which avoid the patterns 3124 and 4312.
		

Crossrefs

A228771(n) = A165534(n) - A228769(n)

Programs

  • Mathematica
    CoefficientList[Series[(1/x) (8 x^6 - 28 x^5 + 50 x^4 - 35 x^3 + 10 x^2 - Sqrt[-4 x + 1] (6 x^5 - 18 x^4 + 21 x^3 - 8 x^2 + x) - x) / (8 x^5 - 46 x^4 + 71 x^3 - 43 x^2 - Sqrt[-4 x + 1] (12 x^4 - 31 x^3 + 27 x^2 - 9 x + 1) + 11 x - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 09 2013 *)

Formula

G.f.: (8*x^6 - 28*x^5 + 50*x^4 - 35*x^3 + 10*x^2 - sqrt(-4*x + 1)*(6*x^5 - 18*x^4 + 21*x^3 - 8*x^2 + x) - x)/(8*x^5 - 46*x^4 + 71*x^3 - 43*x^2 - sqrt(-4*x + 1)*(12*x^4 - 31*x^3 + 27*x^2 - 9*x + 1) + 11*x - 1).
a(n) ~ 4^(n-1)/3 * (1+1/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: -163*(n+2)*(4*n-413) *a(n) +(-652*n^2-725425*n-452889) *a(n-1) +5*(14473*n^2+512276*n-443094) *a(n-2) +(-410045*n^2-2408964*n+8429009) *a(n-3) +2*(404156*n^2-1297075*n-1518084)*a(n-4) -8*(29333*n-32490)*(2*n-11)*a(n-5)=0. - R. J. Mathar, Jun 14 2016

Extensions

Corrected a(17) by Vincenzo Librandi, Sep 09 2013