cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A228780 Power basis components of the algebraic numbers S2(n) in Q(2*cos(Pi/n)), where S2(n) is the square of the sum of the lengths of the distinct line segments (side and diagonals) in the regular n-gon.

Original entry on oeis.org

4, 3, 6, 4, 3, 4, 12, 6, -1, 4, 4, -2, -4, 6, 4, 3, 8, 4, -16, -8, 12, 6, 3, -4, -8, 4, 4, 0, 4, 10, 4, 3, 8, -8, -12, 4, 4, 28, 14, -40, -20, 12, 6, -1, 8, 12, 4, -2, -8, 28, 28, -26, -20, 6, 4, -1, -8, 16, 28, -16, -20, 4, 4, 4, 2, -12, -6, 8, 4, 3, -8, -24, 28, 44, -20, -24, 4, 4, 0, 8, 28, -4, -40, -12, 10, 4, -1, -16, -24, 0, 12, 4
Offset: 2

Views

Author

Wolfdieter Lang, Oct 01 2013

Keywords

Comments

The length of row n of this irregular array is the degree of the algebraic number rho(n):= 2*cos(Pi/n), given in A055034(n). See a Jul 19 2011 comment there.
The regular n-gon, inscribed in a circle of radius defining the length unit 1, has distinct line segments (chords) (V_0, V_j), j=1, ... , floor(n/2), with the n-gon vertices V_j, j=0, ... , n-1 distributed on the circle in the counterclockwise sense. The corresponding length ratios are denoted by L(n,j)/radius. The side length is s(n) = (V_0, V_1) = 2*sin(Pi/n), and for n >= 4 the first (the smallest) diagonal has length s(n)*rho(n), with rho(n) of degree delta(n) given above. s(2) = 2 is the ratio of the diameter of the circle. rho(2) = 0, but we use here rho(2)^0 = 1.
For n = 3: rho(3) = 1, s(3)^2 = 3. The algebraic number field Q(rho(n)) is the subject of the W. Lang link given below.
S2(n) := (sum(L(n,j)/radius, j=1, ... ,floor(n/2))^2 is seen below to be a number in the field Q(rho(n)) of degree delta(n), namely S2(n) = sum(a(n,k)*rho(n)^k, k=0..(delta(n)-1)). From the definition one has S2(n) = (s(n)*sum(S(j-1,rho(n)), j=1..floor(n/2)))^2, with the Chebyshev S-polynomials (see A049310). Due to s(n) = s(2*n)*rho(2*n), rho(2*n) = sqrt(2 + rho(n)) and an S-identity this becomes S2(n) = (s(2*n)*S(floor(n/2)-1, rho(2*n))*S(floor(n/2), rho(2*n)))^2. This can also be written as S2(n) = 4*(1 - T(2*floor(n/2), rho(2*n)/2))*(1 - T(2*(floor(n/2)+1), rho(2*n)/2))/(4-rho(2*n)^2), with Chebyshev's T-polynomials (see A053120). S2(n), written as a function of rho(n), has to be computed modulo the minimal polynomial C(n,rho(n)) of degree delta(n). These minimal polynomials are treated in A187360 (see the link to a Galois paper there, with its Table 2 and Section 3). The result is then the above given representation of S2(n) in the power basis of Q(rho(n)).
This computation was inspired by an email exchange with Seppo Mustonen. The author thanks him for sending the paper given as a link below. In this connection one should consider the even and odd n cases separately in order to find the square of the total length segments/radius in the regular n-gon, noticing that in the odd n case each distinct chord (side or diagonal) appears 2*(n/2) = n times, whereas in the even n case the longest diagonal of length 2 (in units of the radius) appears only n/2 times and the other chords appear n times.

Examples

			The table a(n,k) begins:
n\k     0    1    2    3    4    5 ...
2:      4
3:      3
4:      6    4
5:      3    4
6:     12    6
7:     -1    4    4
8:     -2   -4    6    4
9:      3    8    4
10:   -16   -8   12    6
11:     3   -4   -8    4    4
12:     0    4   10    4
13:     3    8   -8  -12    4    4
14:    28   14  -40  -20   12    6
15:    -1    8    2    4
...
n=5: S2(5) = (4-rho(5)^2)*(Sum_{j=1..2} S(j-1,rho(5)))^2 = 4 + 8*rho(5) + 3*rho(5)^2 - 2*rho(5)^3 - rho(5)^4, reduced with C(5,x) = x^2 - x - 1, with x = rho(5), using C(5,rho(5)) = 0, to eliminate all powers of rho(5) starting with power 2.
This leads to S2(5) = 3*1 + 4*rho(5). rho(5) = phi, the golden section.
The exact or approximate real values for S2(n) are, for n = 2, ..., 15: 4, 3, 11.65685426, 9.472135960, 22.39230484, 19.19566936, 36.32882142, 32.16343753, 53.49096128, 48.37415020, 73.88698896, 67.82742928, 97.52047276, 90.52313112.
		

Crossrefs

Cf. A228781, A228782 (minimal polynomials for odd and even n).

Formula

a(n,k) = [rho^k] (S2(n) modulo C(n,rho(n)), with S2(n) the square of the sum of the distinct length/radius ratios in the regular n-gon, with rho(n) = 2*cos(Pi/n) given above in a comment, and C(n,x) the minimal polynomial of rho(n) given in A187360 (see Table 2 and section 3 of the paper given in the W. Lang link below).

A228781 Irregular triangle read by rows: coefficients of minimal polynomial of a certain algebraic number S2(2*k+1) from Q(2*cos(Pi/n)) related to the regular (2*k+1)-gon, k >= 1.

Original entry on oeis.org

-3, 1, 5, -10, 1, -7, 35, -21, 1, -3, 27, -33, 1, -11, 165, -462, 330, -55, 1, 13, -286, 1287, -1716, 715, -78, 1, 1, -28, 134, -92, 1, 17, -680, 6188, -19448, 24310, -12376, 2380, -136, 1, -19, 969, -11628, 50388, -92378, 75582, -27132, 3876, -171, 1, 1, -58, 655, -1772, 1423, -186, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 01 2013

Keywords

Comments

The row length sequence of this table is delta(2*k+1), with the degree delta(n) = A055034(n) of the algebraic number rho(n):= 2*cos(Pi/n), k >= 1.
The numbers S2(n) have been given in A228780 in the power basis of the degree delta(n) number field Q(rho(n)), with rho(n):= 2*cos(Pi/n), n >= 2. Here the odd n case, n = 2*k + 1 is considered. S2(n) is the square of the sum of the distinct length ratios side/radius or diagonal/radius with the radius of the circle in which a regular n-gon is inscribed. For two formulas for S2(n) in terms of powers of rho(n) see the comment section of A228780.
The minimal (monic) polynomial of S2(2*k+1) has degree delta(2*k+1) and is given by
p(2*k+1,x) = Product_{j=1..delta(2*k+1)} (x - S2(2*k+1)^{(j-1)} (mod C(2*k+1,delta(n))) = sum(a(k, m)*x^m, m = 0..delta(2*k+1)), where S2(2*k+1)^{(0)} = S2(2*k+1) and S2(2*k+1)^{(j-1)} is the (j-1)-th conjugate of S2(2*k+1). The conjugate of a number alpha(n) = Sum_{j=0..(delta(n)-1)} b(n, j)*rho(n)^j in Q(rho(n)) is obtained from the conjugates of rho(n), given in turn by the zeros x(n, j) of the minimal polynomial C(n, x) (see A187360 and the link to the W. Lang Galois paper, tables 2 and 3) as rho(n)^{(j-1)} = x(n, j), j = 1..delta(n), with rho(n)^{(0)} = rho(n).
The motivation to look into this problem originated from emails by Seppo Mustonen, who found experimentally polynomials which had as one zero the square of the total length/radius of all chords (sides and diagonals) in the regular n-gon. See his paper given as a link below. The author thanks Seppo Mustonen for sending his paper.
If the minimal polynomial of the algebraic number S2(n) in the n-gon with n = 2*k+1 is p(n, x) then the minimal polynomial of the square of the sum of the length of all n sides and n*(n-3)/2 diagonals is P(n, x) = n^(2*delta(n))*p(n, x/n^2).

Examples

			The irregular triangle a(k, m) begins:
n   k /m 0     1     2       3      4       5     6    7   8
3   1:  -3     1
5   2:   5   -10     1
7   3:  -7    35   -21       1
9   4:  -3    27   -33       1
11  5: -11   165  -462     330    -55      1
13  6:  13  -286  1287   -1716    715    -78      1
15  7:   1   -28   134     -92      1
17  8:  17  -680  6188  -19448  24310  -12376  2380 -136   1
...
n = 19, L = 9: -19, 969, -11628, 50388, -92378, 75582, -27132, 3876, -171, 1.
n = 21, L = 10: 1, -58, 655, -1772, 1423, -186, 1.
p(5, x) = (x - S2(5))*(x - S2(5)^{(1)}), with S2(5) = 3 + 4*rho(5), where rho(5)=phi, the golden section. C(5, x) = x^2 - x - 1 = (x - rho(5))*(x - (1-rho(5))), hence rho(5)^{(1)} = 1-rho(5), and S2(5)^{(1)} = 3 + 4*(1 - rho(5)) = 7 - 4*rho(5). Thus p(5, x) = -16*rho^2 + 21 + 16*rho -10*x + x^2 which becomes modulo C(5,rho(5)), i.e., using rho(5)^2 = rho(5) + 1, finally p(n, 5) = 5 - 10*x + x^2.
Conjecture (_Seppo Mustonen_): p(5, x) = binomial(5, 1) - binomial(5, 3)*x + binomial(5, 5)* x^2 = 5 - 10*x + x^2.
		

Crossrefs

Cf. A055034, A187360, A228780, A228782 (even case).

Formula

a(k, m) = [x^m] p(2*k+1, x), with the minimal polynomial p(2*k+1, x) of S2(2*k+1) given in the power basis in A228780. p(2*k+1, x) is given in a comment above in terms of the S2(2*k+1) and its conjugates S2(2*k+1)^{(j-1)}, j=2, ..., delta(2*k+1), where delta(n) = A055034(n).
Conjecture from Seppo Mustonen, rewritten for the p(n, x) coefficients for odd primes: p(prime(j), x) = Sum_{i=0..imax(j)} (-1)^(imax(j - i))* binomial(prime(j), 2*i+1)*x^i, with imax(j) = (prime(j)-1)/2. See the adapted eq. (5) of the S. Mustonen paper.
Showing 1-2 of 2 results.