A228781
Irregular triangle read by rows: coefficients of minimal polynomial of a certain algebraic number S2(2*k+1) from Q(2*cos(Pi/n)) related to the regular (2*k+1)-gon, k >= 1.
Original entry on oeis.org
-3, 1, 5, -10, 1, -7, 35, -21, 1, -3, 27, -33, 1, -11, 165, -462, 330, -55, 1, 13, -286, 1287, -1716, 715, -78, 1, 1, -28, 134, -92, 1, 17, -680, 6188, -19448, 24310, -12376, 2380, -136, 1, -19, 969, -11628, 50388, -92378, 75582, -27132, 3876, -171, 1, 1, -58, 655, -1772, 1423, -186, 1
Offset: 1
The irregular triangle a(k, m) begins:
n k /m 0 1 2 3 4 5 6 7 8
3 1: -3 1
5 2: 5 -10 1
7 3: -7 35 -21 1
9 4: -3 27 -33 1
11 5: -11 165 -462 330 -55 1
13 6: 13 -286 1287 -1716 715 -78 1
15 7: 1 -28 134 -92 1
17 8: 17 -680 6188 -19448 24310 -12376 2380 -136 1
...
n = 19, L = 9: -19, 969, -11628, 50388, -92378, 75582, -27132, 3876, -171, 1.
n = 21, L = 10: 1, -58, 655, -1772, 1423, -186, 1.
p(5, x) = (x - S2(5))*(x - S2(5)^{(1)}), with S2(5) = 3 + 4*rho(5), where rho(5)=phi, the golden section. C(5, x) = x^2 - x - 1 = (x - rho(5))*(x - (1-rho(5))), hence rho(5)^{(1)} = 1-rho(5), and S2(5)^{(1)} = 3 + 4*(1 - rho(5)) = 7 - 4*rho(5). Thus p(5, x) = -16*rho^2 + 21 + 16*rho -10*x + x^2 which becomes modulo C(5,rho(5)), i.e., using rho(5)^2 = rho(5) + 1, finally p(n, 5) = 5 - 10*x + x^2.
Conjecture (_Seppo Mustonen_): p(5, x) = binomial(5, 1) - binomial(5, 3)*x + binomial(5, 5)* x^2 = 5 - 10*x + x^2.
A228782
Irregular triangle read by rows: coefficients of minimal polynomial of a certain algebraic number S2(2*k) from Q(2*cos(Pi/(2*k))) related to the regular (2*k)-gon.
Original entry on oeis.org
-4, 1, 4, -12, 1, 36, -24, 1, 16, -96, 136, -40, 1, 16, -96, 136, -56, 1, 16, -320, 456, -80, 1, 3136, -12544, 14896, -7168, 1484, -112, 1, 256, -7168, 41216, -73472, 53344, -17472, 2576, -144, 1, 64, -1152, 5424, -6080, 2124, -168, 1, 256, -13312, 62720, -104192, 76384, -26048, 3920, -208, 1
Offset: 1
The irregular triangle a(k, m) begins:
n k / m 0 1 2 3 4 5 6 7 8
2 1: -4 1
4 2: 4 -12 1
6 3: 36 -24 1
8 4: 16 -96 136 -40 1
10 5: 16 -96 136 -56 1
12 6: 16 -320 456 -80 1
14 7: 3136 -12544 14896 -7168 1484 -112 1
16 8: 256 -7168 41216 -73472 53344 -17472 2576 -144 1
...
n = 18, k = 9: 64, -1152, 5424, -6080, 2124, -168, 1;
n = 20, k = 10: 256, -13312, 62720, -104192, 76384, -26048, 3920, -208, 1.
n = 6, k = 3: p(6, x) = (x - S2(6))*(x - S2(6)^{(1)}),
with S2(6) = 12 + 6*rho(6), where rho(6) = sqrt(3). C(6, x) = x^2 - 3 = (x - rho(6))*(x - (-rho(6))), hence rho(6)^{(1)} - -rho(6) and S2(6)^{(1)} = 12 - 6*rho(6). Thus p(6, x) = 144 - 36*rho(6)^2 - 24*x + x^2, reduced with C(6, rho(6)) = 0, i.e., rho(6)^2 = 3; this becomes finally 36 - 24*x + x^2.
A230072
Coefficients of an algebraic number sqLhat(2*l) in the power basis of the number field Q(2*cos(Pi/2*l)), related to the square of all length in a regular (2*l)-gon inscribed in a circle of radius of 1 length unit.
Original entry on oeis.org
1, 3, 2, 7, 4, -1, 0, 4, 2, -9, -4, 8, 4, -1, 0, 8, 4, 15, 8, -24, -12, 8, 4, -1, 0, 16, 8, -16, -8, 4, 2, 7, 4, -16, -8, 8, 4, -1, 0, 24, 12, -32, -16, 8, 4, 23, 12, -104, -52, 128, 64, -56, -28, 8, 4, -1, 0, 32, 16, -32, -16, 8, 4, -25, -12, 176, 88, -320, -160, 232, 116, -72, -36, 8, 4
Offset: 1
The table a(l,m) (n = 2*l) starts (row length A055034(2*l)):
l, n\m 0 1 2 3 4 5 6 7 8 9 10 1
1, 2: 1
2, 4: 3 2
3, 6: 7 4
4, 8: -1 0 4 2
5, 10: -9 -4 8 4
6, 12: -1 0 8 4
7, 14: 15 8 -24 -12 8 4
8, 16: -1 0 16 8 -16 -8 4 2
9, 18: 7 4 -16 -8 8 4
10, 20: -1 0 24 12 -32 -16 8 4
11, 22: 23 12 -104 -52 128 64 -56 -28 8 4
12, 24: -1 0 32 16 -32 -16 8 4
13, 26: -25 -12 176 88 -320 -160 232 116 -72 -36 8 4
14, 28: -1 0 48 24 -160 -80 168 84 -64 -32 8 4
15, 30: -1 0 16 8 -24 -12 8 4
...
l = 3, n=6: (hexagon) sqLhat(6) = 13 + 4*rho(6) - 2*rho(6)^2 = 7 + 4*sqrt(3), where rho(6) = sqrt(3) and s(6) = 1. C(6,x) = x^2 -3. sqLhat(6) is approximately 13.92820323, therefore Mustonen's L2^(10) is approximately 501.4153163.
l = 5, n=10: (decagon) sqLhat(10) = -9 - 4*rho(10) + 8*rho(10)^2 + 4*rho(10)^3 = 7 + 8*phi + 4*(-1 + (2+phi))*sqrt(2+phi) = 7 + 8*phi + 4*sqrt(7+11*phi), with the golden section phi = rho(5) = (1 + sqrt(5))/2. sqLhat(10) is approximately 39.86345818, therefore Mustonen's L2^(10) is about 3986.345818. Here rho(10) = sqrt(2+phi) and s(10) = phi - 1.
l=6, n = 12: (dodecagon) sqLhat(12) = -1 + 8*rho(12)^2 + 4*rho(12)^3 = 15 + 6*sqrt(6) + 10*sqrt(2) + 4*sqrt(2)*sqrt(6), approximately 57.69548054. rho(12) = sqrt(2+sqrt(3)) and s(12) = sqrt(2 - sqrt(3)). Therefore Mustonen's L2^(12) is approximately 8308.149198.
A230073
Coefficients of the minimal polynomials of the algebraic numbers sqLhat(2*l) from A230072, l >= 1, related to the square of all length in a regular (2*l)-gon inscribed in a circle of radius 1 length unit.
Original entry on oeis.org
-1, 1, 1, -6, 1, 1, -14, 1, 1, -28, 70, -28, 1, 1, -44, 166, -44, 1, 1, -60, 134, -60, 1, 1, -90, 911, -2092, 911, -90, 1, 1, -120, 1820, -8008, 12870, -8008, 1820, -120, 1, 1, -138, 975, -1868, 975, -138, 1, 1, -184, 3740, -16136, 25414, -16136, 3740, -184, 1, 1, -230, 7085, -67528, 252242, -394404, 252242, -67528, 7085, -230, 1, 1, -248, 3612, -16072, 25670, -16072, 3612, -248, 1
Offset: 1
The table a(l,m) (n = 2*l) starts: (row length A055034(2*l))
l, n\m 0 1 2 3 4 5 6 7 8
1, 2: -1 1
2, 4: 1 -6 1
3, 6: 1 -14 1
4, 8: 1 -28 70 -28 1
5, 10: 1 -44 166 -44 1
6, 12: 1 -60 134 -60 1
7, 14: 1 -90 911 -2092 911 -90 1
8, 16: 1 -120 1820 -8008 12870 -8008 1820 -120 1
9, 18: 1 -138 975 -1868 975 -138 1
10, 20: 1 -184 3740 -16136 25414 -16136 3740 -184 1
...
11, 22: 1 -230 7085 -67528 252242 -394404 252242 -67528 7085 -230 1
12, 24: 1 -248 3612 -16072 25670 -16072 3612 -248 1
13, 26: 1 -324 14626 -215604 1346671 -3965064 5692636 -3965064 1346671 -215604 14626 -324 1
14, 28: 1 -372 18242 -266916 1488367 -3925992 5377436 -3925992 1488367 -266916 18242 -372 1
15, 30: 1 -376 4380 -15944 24134 -15944 4380 -376 1
l = 3, n=6: (hexagon) psqLhat(3, x) = 1 - 14*x + x^2. The two roots are positive: 7 + 4*sqrt(3) = sqLhat(3) and 7 - 4*sqrt(3). For the square of the sum of all length ratios one has PsqL(3, x) = 1296 - 504*x + x^2, with the previous two roots scaled by a factor 36.
l = 5, n=10: (decagon) = psqLhat(5, x) = 1 - 44*x + 166*x^2 - 44*x^3 + x^4 with the four positive roots sqLhat(10) = 7 + 8*phi + 4*sqrt(7+11*phi), 15 - 8*phi + 4*sqrt(18 - 11*phi), 15 - 8*phi - 4*sqrt(18 - 11*phi), 7 + 8*phi - 4*sqrt(7 + 11*phi), approximately 39.86345819, 3.851840015, 0.259616169, 0.02508563, respectively, where phi = rho(5) = (1+sqrt(5))/2 (the golden section). PsqL(5, x) =100000000 - 44000000*x + 1660000*x^2 - 4400*x^3 + x^4, with the previous four roots scaled by a factor 100.
l=6, n = 12: (dodecagon) psqLhat(6, x) = 1 - 60*x + 134*x^2 - 60*x^3 + x^4, with the four positive roots sqLhat(12) = 15 + 6*sqrt(6) + 80*sqrt(3*(49-20*sqrt(6))) + 98*sqrt(2*(49-20*sqrt(6))), 15 + 6*sqrt(6) - 80*sqrt(3*(49-20*sqrt(6))) - 98*sqrt(2*(49-20*sqrt(6))), 15 - 6*sqrt(6) + 2*sqrt(2*(49-20*sqrt(6))), 15 - 6*sqrt(6) - 2*sqrt(2*(49-20*sqrt(6))), approximately 57.69548054, 1.69839638, 0.58879070, 0.01733238, respectively.
Mustonen's conjecture for rows no. l = 2^k, k >= 1 (see a comment above): l = 8 (k=3): ((-1)^m)*binomial(16,2*m), m = 0..8: [1, -120, 1820, -8008, 12870, -8008, 1820, -120, 1], with obvious symmetry.
Showing 1-4 of 4 results.
Comments