A228809 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) ).
1, 2, 4, 12, 94, 2195, 158904, 31681195, 13904396167, 15305894726347, 44888344014554903, 288228807835914177564, 4270880356112396772814732, 169380654509201278629725097906, 15394658527137259981745081997280638, 3042352591056504014301304188228238554499
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 +... where log(A(x)) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 + 927100*x^6/6 +...+ A228808(n)*x^n/n +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..73
Programs
-
PARI
{a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m*k, k^2)))+x*O(x^n)), n)} for(n=0, 20, print1(a(n), ", "))
Comments