cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228832 Triangle defined by T(n,k) = binomial(n*k, k^2), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 15, 1, 1, 4, 70, 220, 1, 1, 5, 210, 5005, 4845, 1, 1, 6, 495, 48620, 735471, 142506, 1, 1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1, 1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1, 1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Central coefficients are A201555(n) = C(2*n^2,n^2) = A000984(n^2), where A000984 is the central binomial coefficients.

Examples

			The triangle of coefficients C(n*k, k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1;
1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1;
1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1;
1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1; ...
		

Crossrefs

Cf. A228808 (row sums), A228833 (antidiagonal sums), A135860 (diagonal), A201555 (central terms).
Cf. A229052.
Cf. related triangles: A228904 (exp), A209330, A226234, A228836.

Programs

  • PARI
    {T(n, k)=binomial(n*k, k^2)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A323773 Decimal expansion of the root of the equation (1-2*r)^(4*r-1) * (1-r)^(1-2*r) = r^(2*r).

Original entry on oeis.org

3, 6, 6, 3, 2, 0, 1, 5, 0, 3, 0, 5, 2, 8, 3, 0, 9, 6, 4, 0, 8, 7, 2, 3, 6, 5, 6, 3, 7, 8, 1, 1, 7, 1, 1, 9, 4, 0, 1, 1, 8, 2, 6, 6, 0, 7, 2, 1, 0, 9, 9, 4, 5, 9, 5, 4, 9, 1, 8, 2, 3, 1, 6, 0, 1, 8, 4, 0, 5, 2, 1, 3, 5, 4, 9, 0, 0, 9, 8, 9, 2, 5, 8, 2, 5, 7, 6, 7, 1, 9, 5, 2, 1, 9, 5, 9, 0, 0, 0, 1, 6, 8, 6, 7, 4, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.3663201503052830964087236563781171194011826607210994595491823160184...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-2*r)^(4*r-1) * (1-r)^(1-2*r) == r^(2*r), {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]

A228837 a(n) = Sum_{k=0..[n/2]} binomial((n-k)^2, (n-2*k)*k).

Original entry on oeis.org

1, 1, 2, 5, 38, 597, 14472, 554653, 44421258, 8933194659, 3408672951784, 1984802013951149, 1803179670478111304, 3323206887194925488269, 15156709454119350064982141, 132889643918499982093215167857, 1784438297905511051093397284187186
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2013

Keywords

Comments

Equals the antidiagonal sums of triangle A228836.

Crossrefs

Cf. variants: A209331, A228833, A123165.

Programs

  • Mathematica
    Table[Sum[Binomial[(n-k)^2, (n-2*k)*k],{k,0,Floor[n/2]}],{n,0,15}] (* Vaclav Kotesovec, Sep 05 2013 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial((n-k)^2, (n-2*k)*k))}
    for(n=0,30,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = ((1-r)^2/(r*(1-2*r)))^((1-3*r)*(1-r)/(3*(1-2*r))) = 1.36198508972775011599..., where r = 0.195220321930105755... is the root of the equation (1-3*r+3*r^2)^(3*(2*r-1)) = (r*(1-2*r))^(4*r-1) * (1-r)^(4*(r-1)). - Vaclav Kotesovec, added Sep 05 2013, simplified Mar 04 2014
Showing 1-3 of 3 results.