cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323768 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)^k.

Original entry on oeis.org

1, 1, 2, 3, 5, 14, 43, 171, 1234, 9075, 94295, 1685324, 28688843, 804627839, 34189166176, 1379425012899, 106952499421507, 10394354507270548, 1052079100669253203, 221582922117645427461, 48152920476428200426258, 13152336142340905111739041
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k, k]^k, {k, 0, n/2}], {n, 0, 25}]
  • PARI
    {a(n) = sum(k=0, n\2, binomial(n-k, k)^k)} \\ Seiichi Manyama, Jan 27 2019

Formula

Limit_{n->infinity} a(n)^(1/n^2) = ((1-r)/r)^(r^2/(4*r-1)) = 1.17123387669321050316385592324128471190583619526359450226558587879190245..., where r = A323773 = 0.3663201503052830964087236563781171194011826607210994595... is the root of the equation (1-2*r)^(4*r-1) * (1-r)^(1-2*r) = r^(2*r).

A323777 Decimal expansion of the root of the equation (1-2*r)^(3-4*r) = (1-r)^(2-2*r) * r^(1-2*r).

Original entry on oeis.org

2, 2, 0, 6, 7, 6, 0, 4, 1, 3, 2, 3, 7, 4, 0, 6, 9, 6, 3, 1, 2, 8, 2, 2, 2, 6, 9, 9, 9, 8, 0, 5, 0, 1, 6, 7, 1, 8, 7, 6, 8, 1, 0, 3, 1, 0, 2, 7, 5, 7, 4, 0, 3, 9, 5, 4, 1, 7, 3, 3, 5, 1, 2, 7, 2, 1, 5, 6, 3, 0, 5, 6, 5, 0, 5, 8, 5, 2, 2, 8, 6, 0, 3, 0, 9, 2, 1, 4, 9, 8, 9, 2, 1, 2, 8, 3, 0, 9, 2, 4, 6, 0, 5, 3, 4, 7
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.2206760413237406963128222699980501671876810310275740395417335127215630565...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-2*r)^(3-4*r) == (1-r)^(2-2*r) * r^(1-2*r), {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]

A323778 Decimal expansion of the root of the equation (1-r)^(2-2*r) * r^(2*r) = 1-2*r.

Original entry on oeis.org

3, 6, 5, 4, 9, 8, 4, 9, 8, 2, 1, 9, 8, 5, 8, 0, 4, 4, 5, 7, 9, 7, 3, 6, 8, 7, 5, 4, 4, 6, 2, 9, 9, 0, 8, 8, 3, 2, 2, 7, 5, 8, 8, 0, 6, 9, 6, 3, 4, 6, 0, 2, 9, 5, 0, 1, 5, 9, 5, 5, 1, 6, 7, 6, 8, 2, 1, 1, 8, 8, 3, 6, 7, 4, 0, 8, 4, 8, 7, 3, 0, 0, 3, 5, 2, 2, 8, 4, 1, 0, 7, 4, 0, 8, 2, 1, 5, 4, 8, 5, 3, 8, 7, 5, 7, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.36549849821985804457973687544629908832275880696346029501595516768211883674...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-r)^(2-2*r) * r^(2*r) == 1-2*r, {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]

A228833 a(n) = Sum_{k=0..[n/2]} binomial((n-k)*k, k^2).

Original entry on oeis.org

1, 1, 2, 3, 5, 20, 77, 437, 5509, 54475, 1031232, 31874836, 789351469, 47552777430, 3302430043985, 223753995897916, 39177880844093733, 5954060239110086680, 1226026438114057710320, 551315671593483499670137, 188615011023291125237647365, 124995445742889226418307452940
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Equals antidiagonal sums of triangle A228832.

Crossrefs

Cf. A228832.

Programs

  • Mathematica
    Table[Sum[Binomial[(n-k)*k, k^2],{k,0,Floor[n/2]}],{n,0,15}] (* Vaclav Kotesovec, Sep 06 2013 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial(n*k-k^2, k^2))}
    for(n=0,30,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = ((1-r)/(1-2*r))^(r/2) = 1.171233876693210503..., where r = A323773 = 0.366320150305283... is the root of the equation (1-2*r)^(4*r-1) * (1-r)^(1-2*r) = r^(2*r). - Vaclav Kotesovec, Sep 06 2013
Showing 1-4 of 4 results.