cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A166895 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^(n-k)*n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 7, 39, 366, 5697, 194881, 16288695, 2430565261, 564615230758, 257227244037248, 319346787227133873, 832952161388710135215, 3382434539389226013260403, 22966972221673234523620345857
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 39*x^4/4 + 366*x^5/5 + 5697*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 14*x^4 + 89*x^5 + 1050*x^6 +...+ A166894(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k]^(n - k) *n/(n - k), {k, 0, Floor[n/2]}], {n, 1, 25}] (* G. C. Greubel, May 27 2016 *)
  • PARI
    a(n)=sum(k=0,n\2,binomial(n-k,k)^(n-k)*n/(n-k))

Formula

Logarithmic derivative of A166894.
Limit_{n->oo} a(n)^(1/n^2) = (1/r - 1)^((1 - r)^2/(3 - 4*r)) = 1.436094496902535711953511352318447104797138641971237143543..., where r = A323777 = 0.220676041323740696312822269998050167187681031027574... is the root of the equation (1 - 2*r)^(3 - 4*r) = (1 - r)^(2*(1 - r))*r^(1 - 2*r). - Vaclav Kotesovec, Nov 20 2024

A209331 a(n) = Sum_{k=0..[n/2]} binomial((n-k)^2, n*k-k^2).

Original entry on oeis.org

1, 1, 2, 7, 86, 1905, 66002, 5218373, 1340847046, 688750226335, 527838995308056, 707409447204872377, 2844096719471817175298, 30274246332924074325724393, 517646331335208169889265781259, 13363896516779950029547538703868509
Offset: 0

Views

Author

Paul D. Hanna, Mar 06 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[(n-k)^2, n*k-k^2], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n\2, binomial((n-k)^2, n*k-k^2))}
    for(n=0,20,print1(a(n),", "))

Formula

Equals the antidiagonal sums of triangle A209330(n,k) = C(n^2,n*k).
Limit n->infinity a(n)^(1/n^2) = ((1-r)/r)^((1-r)^2/(3-4*r)) = 1.4360944969025357119535113523184471047971386419..., where r = A323777 = 0.220676041323740696312822269998050167187681031... is the root of the equation (1-2*r)^(3-4*r) = (1-r)^(2-2*r) * r^(1-2*r). - Vaclav Kotesovec, Mar 03 2014

Extensions

Name corrected by Vaclav Kotesovec, Mar 03 2014

A209428 a(n) = Sum_{k=0..[n/2]} binomial(n-k,k)^(n-k).

Original entry on oeis.org

1, 1, 2, 5, 29, 284, 4423, 146913, 12314170, 1881868883, 442540106327, 198351607585964, 242843144659704443, 641109494638274737567, 2641514784666925880476348, 17914201815999230497003603969, 302266027138470510426936352722523
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2012

Keywords

Comments

Equals antidiagonal sums of triangle A209427.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]^(n-k),{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=sum(k=0,n\2,binomial(n-k,k)^(n-k))}
    for(n=0,20,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = ((1-r)/r)^((1-r)^2/(3-4*r)) = 1.4360944969025357119535113523184471..., where r = A323777 = 0.220676041323740696312822269998... is the root of the equation (1-2*r)^(3-4*r) = (1-r)^(2-2*r) * r^(1-2*r). - Vaclav Kotesovec, Mar 06 2014

A323773 Decimal expansion of the root of the equation (1-2*r)^(4*r-1) * (1-r)^(1-2*r) = r^(2*r).

Original entry on oeis.org

3, 6, 6, 3, 2, 0, 1, 5, 0, 3, 0, 5, 2, 8, 3, 0, 9, 6, 4, 0, 8, 7, 2, 3, 6, 5, 6, 3, 7, 8, 1, 1, 7, 1, 1, 9, 4, 0, 1, 1, 8, 2, 6, 6, 0, 7, 2, 1, 0, 9, 9, 4, 5, 9, 5, 4, 9, 1, 8, 2, 3, 1, 6, 0, 1, 8, 4, 0, 5, 2, 1, 3, 5, 4, 9, 0, 0, 9, 8, 9, 2, 5, 8, 2, 5, 7, 6, 7, 1, 9, 5, 2, 1, 9, 5, 9, 0, 0, 0, 1, 6, 8, 6, 7, 4, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.3663201503052830964087236563781171194011826607210994595491823160184...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-2*r)^(4*r-1) * (1-r)^(1-2*r) == r^(2*r), {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]

A323778 Decimal expansion of the root of the equation (1-r)^(2-2*r) * r^(2*r) = 1-2*r.

Original entry on oeis.org

3, 6, 5, 4, 9, 8, 4, 9, 8, 2, 1, 9, 8, 5, 8, 0, 4, 4, 5, 7, 9, 7, 3, 6, 8, 7, 5, 4, 4, 6, 2, 9, 9, 0, 8, 8, 3, 2, 2, 7, 5, 8, 8, 0, 6, 9, 6, 3, 4, 6, 0, 2, 9, 5, 0, 1, 5, 9, 5, 5, 1, 6, 7, 6, 8, 2, 1, 1, 8, 8, 3, 6, 7, 4, 0, 8, 4, 8, 7, 3, 0, 0, 3, 5, 2, 2, 8, 4, 1, 0, 7, 4, 0, 8, 2, 1, 5, 4, 8, 5, 3, 8, 7, 5, 7, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.36549849821985804457973687544629908832275880696346029501595516768211883674...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-r)^(2-2*r) * r^(2*r) == 1-2*r, {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]
Showing 1-5 of 5 results.