cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A166894 G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^n * x^k] * x^n/n ), an integer series in x.

Original entry on oeis.org

1, 1, 2, 4, 14, 89, 1050, 28983, 2066217, 272159513, 56735786726, 23441305184736, 26635730598676118, 64099902414443754551, 241666593661232949435382, 1531373212165249576810266758, 24642808245610936988728333582900
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 14*x^4 + 89*x^5 + 1050*x^6 +...
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 39*x^4/4 + 366*x^5/5 + 5697*x^6/6 +...+ A166895(n)*x^n/n +...
		

Crossrefs

Cf. A166895.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^m*x^k)*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m\2, binomial(m-k, k)^(m-k)*m/(m-k))*x^m/m)+x*O(x^n)), n)}

Formula

G.f.: exp( Sum_{n>=1} A166895(n)*x^n/n ) where A166895(n) = Sum_{k=0..[n/2]} C(n-k,k)^(n-k)*n/(n-k).

A166897 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^3*n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 13, 39, 126, 477, 1765, 6495, 24709, 95128, 367368, 1431453, 5620343, 22170543, 87858813, 349708431, 1397003136, 5598513261, 22502171771, 90681323364, 366299212873, 1482827487650, 6014529069540, 24439715146941
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 13*x^3/3 + 39*x^4/4 + 126*x^5/5 + 477*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 142*x^6 + 459*x^7 +...+ A166896(n)*x^n/n +...
		

Crossrefs

Cf. A166897, variants: A167539, A166895, A166899.

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]^3 n/(n-k),{k,0,Floor[n/2]}],{n,30}] (* Harvey P. Dale, Mar 05 2013 *)
  • PARI
    a(n)=sum(k=0,n\2,binomial(n-k,k)^3*n/(n-k))

Formula

Logarithmic derivative of A166896.
a(n) ~ sqrt(15) * phi^(3*n + 2) / (6*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017

A181081 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)^(n-2k*+1) * n/(n-k).

Original entry on oeis.org

1, 3, 7, 39, 336, 4077, 68461, 1955295, 129385141, 17371664728, 3501431925168, 947675920795833, 355261887514210899, 236156938257380344851, 390707976511340699319417, 1324768245535417597286345871
Offset: 1

Views

Author

Paul D. Hanna, Oct 02 2010

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 39*x^4/4 + 336*x^5/5 + ...
which equals the series:
log(A(x)) = (1 + x)*x + (1 + 2^2*x + x^2)*x^2/2
+ (1+ 3^3*x + 3^2*x^2 + x^3)*x^3/3
+ (1+ 4^4*x + 6^3*x^2 + 4^2*x^3 + x^4)*x^4/4
+ (1+ 5^5*x + 10^4*x^2 + 10^3*x^3 + 5^2*x^4 + x^5)*x^5/5
+ (1+ 6^6*x + 15^5*x^2 + 20^4*x^3 + 15^3*x^4 + 6^2*x^5 + x^6)*x^6/6 + ...
Exponentiation yields the g.f. of A181080:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 14*x^4 + 83*x^5 + 774*x^6 + 10641*x^7 + ...
		

Crossrefs

Cf. A181080 (exp), variants: A181071, A166895.

Programs

  • Magma
    [(&+[Binomial(n-j,j)^(n-2*j+1)*(n/(n-j)): j in [0..Floor(n/2)]]): n in [1..20]]; // G. C. Greubel, Apr 04 2021
    
  • Mathematica
    Table[Sum[Binomial[n-k, k]^(n-2*k+1)*(n/(n-k)), {k, 0, Floor[n/2]}], {n, 20}] (* G. C. Greubel, Apr 04 2021 *)
  • PARI
    a(n)=sum(k=0, n\2, binomial(n-k, k)^(n-2*k+1)*n/(n-k))
    
  • PARI
    {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, m, binomial(m,k)^(m-k+1)*x^k)*x^m/m)+x*O(x^n), n)}
    
  • Sage
    [sum( binomial(n-k, k)^(n-2*k+1)*(n/(n-k)) for k in (0..n//2)) for n in (1..20)] # G. C. Greubel, Apr 04 2021

Formula

L.g.f.: L(x) = Sum_{n>=1} ( Sum_{k=0..n} binomial(n,k)^(n-k+1)*x^k ) * x^n/n.
Logarithmic derivative of A181080.

A323777 Decimal expansion of the root of the equation (1-2*r)^(3-4*r) = (1-r)^(2-2*r) * r^(1-2*r).

Original entry on oeis.org

2, 2, 0, 6, 7, 6, 0, 4, 1, 3, 2, 3, 7, 4, 0, 6, 9, 6, 3, 1, 2, 8, 2, 2, 2, 6, 9, 9, 9, 8, 0, 5, 0, 1, 6, 7, 1, 8, 7, 6, 8, 1, 0, 3, 1, 0, 2, 7, 5, 7, 4, 0, 3, 9, 5, 4, 1, 7, 3, 3, 5, 1, 2, 7, 2, 1, 5, 6, 3, 0, 5, 6, 5, 0, 5, 8, 5, 2, 2, 8, 6, 0, 3, 0, 9, 2, 1, 4, 9, 8, 9, 2, 1, 2, 8, 3, 0, 9, 2, 4, 6, 0, 5, 3, 4, 7
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 27 2019

Keywords

Examples

			0.2206760413237406963128222699980501671876810310275740395417335127215630565...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[r/.FindRoot[(1-2*r)^(3-4*r) == (1-r)^(2-2*r) * r^(1-2*r), {r, 1/3}, WorkingPrecision->250], 10, 200][[1]]

A166899 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^4*n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 25, 111, 456, 2697, 15961, 86247, 495781, 3003738, 17946798, 107667969, 660458787, 4081397547, 25274724105, 157744019799, 991384251102, 6254115981009, 39613066988527, 252017709962526, 1608980424431755
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 25*x^3/3 + 111*x^4/4 + 456*x^5/5 + 2697*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 10*x^3 + 38*x^4 + 137*x^5 + 646*x^6 + 3241*x^7 +...+ A166898(n)*x^n +...
		

Crossrefs

Cf. A166898, variants: A167539, A166895, A166897.

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k]^4 *n/(n - k), {k, 0, Floor[n/2]}], {n, 1, 50}] (* G. C. Greubel, May 27 2016 *)
  • PARI
    a(n)=sum(k=0,n\2,binomial(n-k,k)^4*n/(n-k))

Formula

Logarithmic derivative of A166898.
a(n) ~ 5^(3/4) * phi^(4*n+3) / (2^(5/2) * Pi^(3/2) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017

Extensions

Offset changed to 1 by Georg Fischer, Nov 20 2024

A167539 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^2 * n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 7, 15, 36, 87, 211, 519, 1285, 3198, 7998, 20079, 50571, 127725, 323367, 820407, 2085306, 5309169, 13537045, 34561890, 88347091, 226079208, 579110262, 1484766015, 3809948461, 9783998877, 25143452881, 64658016249, 166375274790
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 36*x^5/5 + 87*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 142*x^6 + 459*x^7 +...+ A004148(n+1)*x^n/n +...
		

Crossrefs

Cf. A004148, variants: A166895, A166897, A166899.

Programs

  • Mathematica
    Table[Sum[(Binomial[n - k, k]^2)*(n/(n - k)), {k, 0, n/2}], {n, 1, 100}] (* G. C. Greubel, Jun 15 2016 *)
  • PARI
    {a(n) = sum(k=0,n\2, binomial(n-k,k)^2 * n/(n-k))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n) = n * polcoeff( log( (1 - x - x^2 - sqrt((1+x+x^2)*(1-3*x+x^2) +x^6*O(x^n) )) / (2*x^3) ), n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n) = sum(k=0,n-1,sum(j=0,k, binomial(n-k+j,n-k)*n/(n-k+j) * binomial(n-k,k-j)*binomial(k-j,j)))}
    for(n=1,30,print1(a(n),", "))

Formula

L.g.f.: Log((1 - x - x^2 - sqrt((1+x+x^2)*(1-3*x+x^2)))/(2*x^3)) = Sum_{n>=1} a(n)*x^n/n. - Paul D. Hanna, Jul 19 2015
L.g.f.: -Log((1 - x - x^2 + sqrt((1+x+x^2)*(1-3*x+x^2)))/2) = Sum_{n>=1} a(n)*x^n/n. (Minor simplification of the l.g.f. given above.) - Petros Hadjicostas, Oct 25 2017
a(n) = Sum_{k=0..n-1} Sum_{j=0..k} C(n-k+j,n-k)*n/(n-k+j) * C(n-k,k-j)*C(k-j,j).
a(n) ~ 5^(1/4) * phi^(2*n + 1) / (2*sqrt(Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017

A181083 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)^n * n/(n-k).

Original entry on oeis.org

1, 3, 13, 111, 1686, 88737, 14355265, 3583775847, 1789371713317, 4311992850152298, 23667113846872049808, 185391762466214524964649, 4305238471804328835068596175, 468653724243371951619336632177235
Offset: 1

Views

Author

Paul D. Hanna, Oct 02 2010

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 13*x^3/3 + 111*x^4/4 + 1686*x^5/5 + ...
which equals the series:
  L(x) = (1 + x)*x + (1 + 2^3*x + x^2)*x^2/2
  + (1 + 3^4*x +  3^5*x^2 +      x^3)*x^3/3
  + (1 + 4^5*x +  6^6*x^2 +  4^7*x^3 +       x^4)*x^4/4
  + (1 + 5^6*x + 10^7*x^2 + 10^8*x^3 +   5^9*x^4 +      x^5)*x^5/5
  + (1 + 6^7*x + 15^8*x^2 + 20^9*x^3 + 15^10*x^4 + 6^11*x^5 + x^6)*x^6/6 + ...
Exponentiation yields the g.f. of A181082:
  exp(L(x)) = 1 + x + 2*x^2 + 6*x^3 + 34*x^4 + 375*x^5 + 15200*x^6 + 2066401*x^7 + ...
		

Crossrefs

Variants: A166895, A181071, A181081.
Cf. A181082 (exp).

Programs

  • Magma
    [(&+[Binomial(n-k,k)^n*(n/(n-k)): k in [0..Floor(n/2)]]): n in [1..25]]; // G. C. Greubel, Apr 05 2021
    
  • Maple
    A181083:= n-> add(binomial(n-k,k)^n*(n/(n-k)), k=0..floor(n/2)); seq(A181083(n), n=1..20); # G. C. Greubel, Apr 05 2021
  • Mathematica
    Table[Sum[Binomial[n-k,k]^n n/(n-k),{k,0,Floor[n/2]}],{n,20}] (* Harvey P. Dale, Jun 24 2015 *)
  • PARI
    a(n)=sum(k=0, n\2, binomial(n-k, k)^n*n/(n-k))
    
  • PARI
    {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, m, binomial(m,k)^(m+k)*x^k)*x^m/m)+x*O(x^n), n)}
    
  • Sage
    [sum(binomial(n-k,k)^n*(n/(n-k)) for k in (0..n//2)) for n in (1..25)] # G. C. Greubel, Apr 05 2021

Formula

L.g.f.: L(x) = Sum_{n>=1} [Sum_{k=0..n} binomial(n,k)^(n+k)*x^k] * x^n/n.
Logarithmic derivative of A181082.

A181085 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)^(n+1) * n/(n-k).

Original entry on oeis.org

1, 3, 25, 327, 6336, 513657, 142074241, 52903930911, 36806786795365, 148308705637730728, 1318954828711012426638, 15279013243159345043036553, 534104982404807772659968455891, 97749134742042348389685885848315523
Offset: 1

Views

Author

Paul D. Hanna, Oct 28 2010

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 25*x^3/3 + 327*x^4/4 + 6336*x^5/5 + ...
which equals the series:
L(x) = (1 + x)*x + (1 + 2^4*x + x^2)*x^2/2
+ (1+ 3^5*x + 3^6*x^2 + x^3)*x^3/3
+ (1+ 4^6*x + 6^7*x^2 + 4^8*x^3 + x^4)*x^4/4
+ (1+ 5^7*x + 10^8*x^2 + 10^9*x^3 + 5^10*x^4 + x^5)*x^5/5
+ (1+ 6^8*x + 15^9*x^2 + 20^10*x^3 + 15^11*x^4 + 6^12*x^5 + x^6)*x^6/6 + ...
Exponentiation yields the g.f. of A181084:
exp(L(x)) = 1 + x + 2*x^2 + 10*x^3 + 92*x^4 + 1367*x^5 + 87090*x^6 + ...
		

Crossrefs

Cf. A181084 (exp).

Programs

  • Magma
    [(&+[Binomial(n-j,j)^(n+1)*(n/(n-j)): j in [0..Floor(n/2)]]): j in [1..20]]; // G. C. Greubel, Apr 04 2021
  • Mathematica
    Table[Sum[Binomial[n-k, k]^(n+1)*(n/(n-k)), {k, 0, Floor[n/2]}], {n, 20}] (* G. C. Greubel, Apr 04 2021 *)
  • PARI
    a(n)=sum(k=0, n\2, binomial(n-k, k)^(n+1)*n/(n-k))
    
  • PARI
    {a(n)=n*polcoeff(sum(m=1, n, sum(k=0, m, binomial(m,k)^(m+k+1)*x^k)*x^m/m)+x*O(x^n), n)}
    
  • Sage
    [sum( binomial(n-k, k)^(n+1)*(n/(n-k)) for k in (0..n//2)) for n in (1..20)] # G. C. Greubel, Apr 04 2021
    
Showing 1-8 of 8 results.