cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A166895 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^(n-k)*n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 7, 39, 366, 5697, 194881, 16288695, 2430565261, 564615230758, 257227244037248, 319346787227133873, 832952161388710135215, 3382434539389226013260403, 22966972221673234523620345857
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 39*x^4/4 + 366*x^5/5 + 5697*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 14*x^4 + 89*x^5 + 1050*x^6 +...+ A166894(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k]^(n - k) *n/(n - k), {k, 0, Floor[n/2]}], {n, 1, 25}] (* G. C. Greubel, May 27 2016 *)
  • PARI
    a(n)=sum(k=0,n\2,binomial(n-k,k)^(n-k)*n/(n-k))

Formula

Logarithmic derivative of A166894.
Limit_{n->oo} a(n)^(1/n^2) = (1/r - 1)^((1 - r)^2/(3 - 4*r)) = 1.436094496902535711953511352318447104797138641971237143543..., where r = A323777 = 0.220676041323740696312822269998050167187681031027574... is the root of the equation (1 - 2*r)^(3 - 4*r) = (1 - r)^(2*(1 - r))*r^(1 - 2*r). - Vaclav Kotesovec, Nov 20 2024

A181080 Expansion of g.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^(n-k+1) * x^k] * x^n/n ).

Original entry on oeis.org

1, 1, 2, 4, 14, 83, 774, 10641, 255918, 14643874, 1752083557, 320079087261, 79294841767020, 27407454296637142, 16895839815165609994, 26064121763003372842186, 82824096391548076720149081
Offset: 0

Views

Author

Paul D. Hanna, Oct 02 2010

Keywords

Comments

Conjecture: this sequence consists entirely of integers.
Note that the following g.f. does NOT yield an integer series:
exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^(n-k) * x^k] * x^n/n ).

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 4*x^3 + 14*x^4 + 83*x^5 + 774*x^6 +...
The logarithm of g.f. A(x) begins:
  log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 39*x^4/4 + 336*x^5/5 + 4077*x^6/6 + ... + A181081(n)*x^n/n + ...
and equals the series:
  log(A(x)) = (1 + x)*x + (1 + 2^2*x + x^2)*x^2/2
  + (1 + 3^3*x +  3^2*x^2 +      x^3)*x^3/3
  + (1 + 4^4*x +  6^3*x^2 +  4^2*x^3 +      x^4)*x^4/4
  + (1 + 5^5*x + 10^4*x^2 + 10^3*x^3 +  5^2*x^4 +     x^5)*x^5/5
  + (1 + 6^6*x + 15^5*x^2 + 20^4*x^3 + 15^3*x^4 + 6^2*x^5 + x^6)*x^6/6 + ...
		

Crossrefs

Variants: A166894, A181070, A181082.
Cf. A181081 (log).

Programs

  • Magma
    m:=20;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( Exp( (&+[ (&+[ Binomial(n,k)^(n-k+1)*x^(n+k)/n : k in [0..n]]): n in [1..m+1]]) ) )); // G. C. Greubel, Apr 05 2021
    
  • Mathematica
    With[{m=20}, CoefficientList[Series[Exp[Sum[Sum[Binomial[n, k]^(n-k+1)*x^(n+k)/n, {k,0,n}], {n,m+1}]], {x,0,m}], x]] (* G. C. Greubel, Apr 05 2021 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^(m-k+1)*x^k)*x^m/m)+x*O(x^n)),n)}
    
  • Sage
    m=20;
    def A181066_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( exp( sum( sum( binomial(n,k)^(n-k+1)*x^(n+k)/n for k in (0..n) ) for n in (1..m+1)) ) ).list()
    A181066_list(m) # G. C. Greubel, Apr 05 2021

A166896 G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k] * x^n/n ), an integer series in x.

Original entry on oeis.org

1, 1, 2, 6, 16, 45, 142, 459, 1508, 5122, 17787, 62649, 223971, 811339, 2970032, 10974150, 40893393, 153512844, 580082454, 2205046961, 8427087958, 32362949488, 124837337235, 483508287359, 1879669861074, 7332469937755
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 142*x^6 + 459*x^7 +...
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 39*x^4/4 + 126*x^5/5 + 477*x^6/6 + 1765*x^7/7 +...+ A166897(n)*x^n/n +...
		

Crossrefs

Cf. A166897, variants: A166894, A166898.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^3*x^k)*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m\2, binomial(m-k, k)^3*m/(m-k))*x^m/m)+x*O(x^n)), n)}

Formula

G.f.: exp( Sum_{n>=1} A166897(n)*x^n/n ) where A166897(n) = Sum_{k=0..[n/2]} C(n-k,k)^3*n/(n-k).

A166898 G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4 * x^k] * x^n/n ), an integer series in x.

Original entry on oeis.org

1, 1, 2, 10, 38, 137, 646, 3241, 15623, 79439, 427562, 2317396, 12715372, 71543343, 408543758, 2353591560, 13717994046, 80827739181, 480016288156, 2871701561720, 17304832805996, 104933348346951, 639814473417775
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 38*x^4 + 137*x^5 + 646*x^6 + 3241*x^7 +...
log(A(x)) = x + 3*x^2/2 + 25*x^3/3 + 111*x^4/4 + 456*x^5/5 + 2697*x^6/6 + 15961*x^7/7 +...+ A166899(n)*x^n/n +...
		

Crossrefs

Cf. A166897, variants: A166894, A166898.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^4*x^k)*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m\2, binomial(m-k, k)^4*m/(m-k))*x^m/m)+x*O(x^n)), n)}

Formula

G.f.: exp( Sum_{n>=1} A166899(n)*x^n/n ) where A166899(n) = Sum_{k=0..[n/2]} C(n-k,k)^4*n/(n-k).

A209424 Triangle defined by g.f.: A(x,y) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n, k)^n * y^k ), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 76, 347, 76, 1, 1, 701, 20429, 20429, 701, 1, 1, 8477, 1919660, 10707908, 1919660, 8477, 1, 1, 126126, 259227625, 9203978774, 9203978774, 259227625, 126126, 1, 1, 2223278, 47484618291, 12099129236936, 72078431500368
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2012

Keywords

Comments

Column 1 is A060946.
Column 2 is A209425.
Row sums equal A167007.
Antidiagonal sums equal A166894.
Central terms form A209426.

Examples

			This triangle begins:
1;
1, 1;
1, 3, 1;
1, 12, 12, 1;
1, 76, 347, 76, 1;
1, 701, 20429, 20429, 701, 1;
1, 8477, 1919660, 10707908, 1919660, 8477, 1;
1, 126126, 259227625, 9203978774, 9203978774, 259227625, 126126, 1;
1, 2223278, 47484618291, 12099129236936, 72078431500368, 12099129236936, 47484618291, 2223278, 1; ...
G.f.: A(x,y) = 1 + (1+y)*x + (1+3*y+y^2)*x^2 + (1+12*y+12*y^2+y^3)*x^3 + (1+76*y+20429*y^2+76*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^2*y + y^2)*x^2/2
+ (1 + 3^3*y + 3^3*y^2 + y^3)*x^3/3
+ (1 + 4^4*y + 6^4*y^2 + 4^4*y^3 + y^4)*x^4/4
+ (1 + 5^5*y + 10^5*y^2 + 10^5*y^3 + 5^5*y^4 + y^5)*x^5/5 +...
in which the coefficients are found in triangle A209427.
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m,k)^m*y^k))+x*O(x^n)),n,x),k,y)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Showing 1-5 of 5 results.