cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181144 G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4*y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 36, 36, 1, 1, 100, 419, 100, 1, 1, 225, 2699, 2699, 225, 1, 1, 441, 12138, 35052, 12138, 441, 1, 1, 784, 42865, 286206, 286206, 42865, 784, 1, 1, 1296, 127191, 1696820, 3932898, 1696820, 127191, 1296, 1, 1, 2025, 330903, 7958563
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2010

Keywords

Comments

Compare g.f. to that of the following triangle variants:
* Pascal's: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)*y^k] * x^n/n );
* Narayana: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n );
* A181143: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3*y^k] * x^n/n );
* A218115: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^5*y^k] * x^n/n );
* A218116: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^6*y^k] * x^n/n ).

Examples

			G.f.: A(x,y) = 1 + (1+y)*x + (1+9*y+y^2)*x^2 + (1+36*y+36*y^2+y^3)*x^3 + (1+100*y+419*y^2+100*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^4*y + y^2)*x^2/2
+ (1 + 3^4*y + 3^4*y^2 + y^3)*x^3/3
+ (1 + 4^4*y + 6^4*y^2 + 4^4*y^3 + y^4)*x^4/4
+ (1 + 5^4*y + 10^4*y^2 + 10^4*y^3 + 5^4*y^4 + y^5)*x^5/5 +...
Triangle begins:
1;
1, 1;
1, 9, 1;
1, 36, 36, 1;
1, 100, 419, 100, 1;
1, 225, 2699, 2699, 225, 1;
1, 441, 12138, 35052, 12138, 441, 1;
1, 784, 42865, 286206, 286206, 42865, 784, 1;
1, 1296, 127191, 1696820, 3932898, 1696820, 127191, 1296, 1;
1, 2025, 330903, 7958563, 36955542, 36955542, 7958563, 330903, 2025, 1;
1, 3025, 776688, 31205941, 261852055, 525079969, 261852055, 31205941, 776688, 3025, 1; ...
Note that column 1 forms the sum of cubes (A000537), and forms the squares of the triangular numbers.
Inverse binomial transform of columns begins:
[1];
[1, 8, 19, 18, 6];
[1, 35, 348, 1549, 3713, 5154, 4161, 1818, 333];
[1, 99, 2500, 27254, 161793, 589819, 1409579, 2282850, 2529900, 1893972, 917349, 259854, 32726]; ...
		

Crossrefs

Cf. A000537 (column 1), A166992 (row sums), A166898 (antidiagonal sums), A218140.
Cf. variants: A001263 (Narayana), A181143, A218115, A218116.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^4*y^j)*x^m/m)+O(x^(n+1))),n,x),k,y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A166896 G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k] * x^n/n ), an integer series in x.

Original entry on oeis.org

1, 1, 2, 6, 16, 45, 142, 459, 1508, 5122, 17787, 62649, 223971, 811339, 2970032, 10974150, 40893393, 153512844, 580082454, 2205046961, 8427087958, 32362949488, 124837337235, 483508287359, 1879669861074, 7332469937755
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 142*x^6 + 459*x^7 +...
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 39*x^4/4 + 126*x^5/5 + 477*x^6/6 + 1765*x^7/7 +...+ A166897(n)*x^n/n +...
		

Crossrefs

Cf. A166897, variants: A166894, A166898.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^3*x^k)*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m\2, binomial(m-k, k)^3*m/(m-k))*x^m/m)+x*O(x^n)), n)}

Formula

G.f.: exp( Sum_{n>=1} A166897(n)*x^n/n ) where A166897(n) = Sum_{k=0..[n/2]} C(n-k,k)^3*n/(n-k).

A166899 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^4*n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 25, 111, 456, 2697, 15961, 86247, 495781, 3003738, 17946798, 107667969, 660458787, 4081397547, 25274724105, 157744019799, 991384251102, 6254115981009, 39613066988527, 252017709962526, 1608980424431755
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 25*x^3/3 + 111*x^4/4 + 456*x^5/5 + 2697*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 10*x^3 + 38*x^4 + 137*x^5 + 646*x^6 + 3241*x^7 +...+ A166898(n)*x^n +...
		

Crossrefs

Cf. A166898, variants: A167539, A166895, A166897.

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k]^4 *n/(n - k), {k, 0, Floor[n/2]}], {n, 1, 50}] (* G. C. Greubel, May 27 2016 *)
  • PARI
    a(n)=sum(k=0,n\2,binomial(n-k,k)^4*n/(n-k))

Formula

Logarithmic derivative of A166898.
a(n) ~ 5^(3/4) * phi^(4*n+3) / (2^(5/2) * Pi^(3/2) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017

Extensions

Offset changed to 1 by Georg Fischer, Nov 20 2024

A196560 G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4 * x^k]^2 * x^n/n ).

Original entry on oeis.org

1, 1, 3, 20, 205, 2624, 24793, 283522, 3639005, 50426826, 740744940, 10801827249, 163698355616, 2554965416964, 40878247859612, 667841855292388, 11051724909284834, 185702751266940874, 3162454792706586691, 54508849210857505845
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 20*x^3 + 205*x^4 + 2624*x^5 + 24793*x^6 +...
where
log(A(x)) = (1 + x)^2*x + (1+2^4*x+x^2)^2*x^2/2 + (1+3^4*x+3^4*x^2+x^3)^2*x^3/3 + (1+4^4*x+6^4*x^2+4^4*x^3+x^4)^2*x^4/4 +...
More explicitly,
log(A(x)) = x + 5*x^2/2 + 52*x^3/3 + 733*x^4/4 + 11926*x^5/5 + 129944*x^6/6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^4*x^k)^2*x^m/m)+x*O(x^n)), n)}
Showing 1-4 of 4 results.