cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166897 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^3*n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 13, 39, 126, 477, 1765, 6495, 24709, 95128, 367368, 1431453, 5620343, 22170543, 87858813, 349708431, 1397003136, 5598513261, 22502171771, 90681323364, 366299212873, 1482827487650, 6014529069540, 24439715146941
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 13*x^3/3 + 39*x^4/4 + 126*x^5/5 + 477*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 142*x^6 + 459*x^7 +...+ A166896(n)*x^n/n +...
		

Crossrefs

Cf. A166897, variants: A167539, A166895, A166899.

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]^3 n/(n-k),{k,0,Floor[n/2]}],{n,30}] (* Harvey P. Dale, Mar 05 2013 *)
  • PARI
    a(n)=sum(k=0,n\2,binomial(n-k,k)^3*n/(n-k))

Formula

Logarithmic derivative of A166896.
a(n) ~ sqrt(15) * phi^(3*n + 2) / (6*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017

A166898 G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4 * x^k] * x^n/n ), an integer series in x.

Original entry on oeis.org

1, 1, 2, 10, 38, 137, 646, 3241, 15623, 79439, 427562, 2317396, 12715372, 71543343, 408543758, 2353591560, 13717994046, 80827739181, 480016288156, 2871701561720, 17304832805996, 104933348346951, 639814473417775
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 38*x^4 + 137*x^5 + 646*x^6 + 3241*x^7 +...
log(A(x)) = x + 3*x^2/2 + 25*x^3/3 + 111*x^4/4 + 456*x^5/5 + 2697*x^6/6 + 15961*x^7/7 +...+ A166899(n)*x^n/n +...
		

Crossrefs

Cf. A166897, variants: A166894, A166898.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^4*x^k)*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m\2, binomial(m-k, k)^4*m/(m-k))*x^m/m)+x*O(x^n)), n)}

Formula

G.f.: exp( Sum_{n>=1} A166899(n)*x^n/n ) where A166899(n) = Sum_{k=0..[n/2]} C(n-k,k)^4*n/(n-k).

A167539 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^2 * n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 7, 15, 36, 87, 211, 519, 1285, 3198, 7998, 20079, 50571, 127725, 323367, 820407, 2085306, 5309169, 13537045, 34561890, 88347091, 226079208, 579110262, 1484766015, 3809948461, 9783998877, 25143452881, 64658016249, 166375274790
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 15*x^4/4 + 36*x^5/5 + 87*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 142*x^6 + 459*x^7 +...+ A004148(n+1)*x^n/n +...
		

Crossrefs

Cf. A004148, variants: A166895, A166897, A166899.

Programs

  • Mathematica
    Table[Sum[(Binomial[n - k, k]^2)*(n/(n - k)), {k, 0, n/2}], {n, 1, 100}] (* G. C. Greubel, Jun 15 2016 *)
  • PARI
    {a(n) = sum(k=0,n\2, binomial(n-k,k)^2 * n/(n-k))}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n) = n * polcoeff( log( (1 - x - x^2 - sqrt((1+x+x^2)*(1-3*x+x^2) +x^6*O(x^n) )) / (2*x^3) ), n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n) = sum(k=0,n-1,sum(j=0,k, binomial(n-k+j,n-k)*n/(n-k+j) * binomial(n-k,k-j)*binomial(k-j,j)))}
    for(n=1,30,print1(a(n),", "))

Formula

L.g.f.: Log((1 - x - x^2 - sqrt((1+x+x^2)*(1-3*x+x^2)))/(2*x^3)) = Sum_{n>=1} a(n)*x^n/n. - Paul D. Hanna, Jul 19 2015
L.g.f.: -Log((1 - x - x^2 + sqrt((1+x+x^2)*(1-3*x+x^2)))/2) = Sum_{n>=1} a(n)*x^n/n. (Minor simplification of the l.g.f. given above.) - Petros Hadjicostas, Oct 25 2017
a(n) = Sum_{k=0..n-1} Sum_{j=0..k} C(n-k+j,n-k)*n/(n-k+j) * C(n-k,k-j)*C(k-j,j).
a(n) ~ 5^(1/4) * phi^(2*n + 1) / (2*sqrt(Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017
Showing 1-3 of 3 results.