cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166897 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^3*n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 13, 39, 126, 477, 1765, 6495, 24709, 95128, 367368, 1431453, 5620343, 22170543, 87858813, 349708431, 1397003136, 5598513261, 22502171771, 90681323364, 366299212873, 1482827487650, 6014529069540, 24439715146941
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 13*x^3/3 + 39*x^4/4 + 126*x^5/5 + 477*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 142*x^6 + 459*x^7 +...+ A166896(n)*x^n/n +...
		

Crossrefs

Cf. A166897, variants: A167539, A166895, A166899.

Programs

  • Mathematica
    Table[Sum[Binomial[n-k,k]^3 n/(n-k),{k,0,Floor[n/2]}],{n,30}] (* Harvey P. Dale, Mar 05 2013 *)
  • PARI
    a(n)=sum(k=0,n\2,binomial(n-k,k)^3*n/(n-k))

Formula

Logarithmic derivative of A166896.
a(n) ~ sqrt(15) * phi^(3*n + 2) / (6*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017

A166899 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^4*n/(n-k), n>=1.

Original entry on oeis.org

1, 3, 25, 111, 456, 2697, 15961, 86247, 495781, 3003738, 17946798, 107667969, 660458787, 4081397547, 25274724105, 157744019799, 991384251102, 6254115981009, 39613066988527, 252017709962526, 1608980424431755
Offset: 1

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 25*x^3/3 + 111*x^4/4 + 456*x^5/5 + 2697*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 10*x^3 + 38*x^4 + 137*x^5 + 646*x^6 + 3241*x^7 +...+ A166898(n)*x^n +...
		

Crossrefs

Cf. A166898, variants: A167539, A166895, A166897.

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k]^4 *n/(n - k), {k, 0, Floor[n/2]}], {n, 1, 50}] (* G. C. Greubel, May 27 2016 *)
  • PARI
    a(n)=sum(k=0,n\2,binomial(n-k,k)^4*n/(n-k))

Formula

Logarithmic derivative of A166898.
a(n) ~ 5^(3/4) * phi^(4*n+3) / (2^(5/2) * Pi^(3/2) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017

Extensions

Offset changed to 1 by Georg Fischer, Nov 20 2024

A123612 Antidiagonal sums of triangle A123610.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 17, 31, 68, 145, 325, 728, 1685, 3891, 9140, 21565, 51311, 122666, 295037, 712477, 1728262, 4207027, 10276693, 25178708, 61866141, 152397945, 376309596, 931239093, 2309219447, 5737078442, 14278587533, 35595622719
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2006

Keywords

Comments

The g.f. was suggested by P. D. Hanna. It can be proved either by letting y=x in the bivariate g.f. for sequence A123610 or by using the formula of A. Howroyd (below) for this sequence and the l.g.f. for sequence A167539. The second proof proceeds as follows: Sum_{n>=1} a(n)*x^n = Sum_{n>=1} (1/n)*Sum_{d|n} phi(n/d)*g(d), where g(d) = A167539(d). Then Sum_{n>=1} a(n)*x^n = Sum_{m>=1} (phi(m)/m)*Sum_{d>=1} g(d)*(x^m)^d/d = Sum_{m>=1} (phi(m)/m)*G(x^m), where G(x) = l.g.f. of sequence g(n) = A167539(n). - Petros Hadjicostas, Oct 25 2017

Crossrefs

Cf. A123610 (triangle), A123611 (row sums); central terms: A123617, A123618, A167539.

Programs

  • Mathematica
    Total /@ Table[Function[m, If[k == 0, 1, 1/m DivisorSum[m, If[GCD[k, #] == #, EulerPhi[#] Binomial[m/#, k/#]^2, 0] &]]][n - k + 1], {n, -1, 30}, {k, 0, Ceiling[n/2]}] (* Michael De Vlieger, Apr 03 2017, after Jean-François Alcover at A123610 *)
  • PARI
    {a(n)=sum(k=0,n\2,if(k==0,1,(1/(n-k))*sumdiv(n-k,d,if(gcd(k,d)==d, eulerphi(d)*binomial((n-k)/d,k/d)^2,0))))}

Formula

a(n) = (1/n) * Sum_{d | n} phi(n/d) * A167539(d) for n>0. - Andrew Howroyd, Apr 02 2017
G.f.: 1-Sum_{n>=1} (phi(n)/n)*f(x^n), where f(x) = log((1-x-x^2+sqrt((1+x+x^2)*(1-3*x+x^2)))/2) = -log((1-x-x^2-sqrt((1+x+x^2)*(1-3*x+x^2)))/(2*x^3)). - Petros Hadjicostas, Oct 25 2017
Showing 1-3 of 3 results.