cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A226872 1 together with even numbers n >= 2 such that 1^n + 2^n + 3^n + ... + n^n == n/2 (mod n).

Original entry on oeis.org

1, 2, 4, 8, 10, 14, 16, 22, 26, 28, 32, 34, 38, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 74, 76, 82, 86, 88, 92, 94, 98, 104, 106, 112, 116, 118, 122, 124, 128, 130, 134, 136, 142, 146, 148, 152, 154, 158, 164, 166, 170, 172, 176, 178, 182, 184, 188, 190, 194, 196
Offset: 1

Views

Author

Keywords

Comments

For n>1, a(n) is even. Alternatively, the even terms of this sequence can be characterized in any of the following ways: (i) even integers n such that n*B(n) == n/2 (mod n), where B(n) is the n-th Bernulli number; OR (ii) integers n such that gcd(n,A027642(n)) = 2; OR (iii) even integers n such that (p-1) does not divide n for every odd prime p dividing n (cf. A124240). - Max Alekseyev, Sep 05 2013

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[200], Mod[Sum[PowerMod[k, #, #], {k, #}], #] == #/2 &]] (* T. D. Noe, Sep 04 2013 *)
  • PARI
    is(n)=if(n%2,return(n==1));my(f=factor(n)[,1]);for(i=2,#f,if(n%(f[i]-1)==0,return(0)));1 \\ Charles R Greathouse IV, Sep 04 2013

A228869 Numbers n such that 2 * (1^n + 2^n + 3^n + ... + n^n) == 0 (mod n).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83
Offset: 1

Views

Author

T. D. Noe, Sep 06 2013

Keywords

Comments

See A228870 for the numbers not in this sequence.
Union of A226872 and the positive odd integers (A005408).
Also, positive integers n such that (p-1) does not divide n for every odd prime p dividing n (cf. A124240). - Max Alekseyev, Sep 07 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[100], Mod[2*Sum[PowerMod[k, #, #], {k, #}], #] == 0 &]

A280187 Numbers n such that 2 * (1^n + 2^n + 3^n + ... + n^n) is not 0 (mod n), but 2 * (1^d + 2^d + 3^d + ... + d^d) is 0 (mod d) for each other d | n.

Original entry on oeis.org

6, 20, 110, 272, 506, 812, 2162, 2756, 3422, 4970, 6806, 7832, 11342, 12656, 17030, 18632, 22052, 27722, 29756, 31862, 36290, 38612, 51302, 54056, 56882, 62750, 65792, 68906, 72092, 85556, 96410, 100172, 120062, 124256, 128522
Offset: 1

Views

Author

Keywords

Crossrefs

Primitive elements of A228870.
Subsequence of A002943. Also a subsequence of A028689, A036689, A053198, A068377, A079143, A128672, A220211 and other sequences ...- Paolo P. Lava, Jan 10 2017

Programs

  • PARI
    has(n)=my(f=factor(n)[,1]); for(i=1,#f, if(n%(f[i]-1)==0 && f[i]>2, return(1))); 0
    is(n)=if(n%2, return(0)); if(n%3==0, return(n==6)); if(n%20==0, return(n==20)); if(!has(n), return(0)); my(f=factor(n)[,1]); for(i=1,#f, if(has(n/f[i]), return(0))); 1 \\ Charles R Greathouse IV, Dec 28 2016
Showing 1-3 of 3 results.