A228879 a(n+2) = 3*a(n), starting 4,7.
4, 7, 12, 21, 36, 63, 108, 189, 324, 567, 972, 1701, 2916, 5103, 8748, 15309, 26244, 45927, 78732, 137781, 236196, 413343, 708588, 1240029, 2125764, 3720087, 6377292, 11160261, 19131876, 33480783, 57395628, 100442349, 172186884, 301327047, 516560652
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Twitter / MathQuizzes, Puzzle relating to this sequence
- Index entries for linear recurrences with constant coefficients, signature (0,3).
Programs
-
Mathematica
LinearRecurrence[{0, 3}, {4, 7}, 50] (* Paolo Xausa, Oct 14 2024 *)
-
PARI
Vec(-(7*x+4)/(3*x^2-1) + O(x^100)) \\ Colin Barker, Jun 09 2014
Formula
a(n) = sqrt(3*a(n-1)^2 + (-3)^(n-1)), a(0) = 4.
This divisibility relation also applies: a(n+3) = a(n+2)*a(n+1)/a(n).
G.f.: -(7*x+4) / (3*x^2-1). - Colin Barker, Jun 09 2014
From Stefano Spezia, Mar 20 2022: (Start)
a(n) = 3^((n-1)/2)*(4*sqrt(3) + 7 + (-1)^n*(4*sqrt(3) - 7))/2.
E.g.f.: 4*cosh(sqrt(3)*x) + 7*sinh(sqrt(3)*x)/sqrt(3). (End)
Extensions
More terms from Colin Barker, Jun 09 2014
Comments