A227418 Array A(n,k) with all numbers m such that 3*m^2 +- 3^k is a square and their corresponding square roots, read by downward antidiagonals.
0, 1, 1, 0, 2, 4, 3, 3, 7, 15, 0, 6, 12, 26, 56, 9, 9, 21, 45, 97, 209, 0, 18, 36, 78, 168, 362, 780, 27, 27, 63, 135, 291, 627, 1351, 2911, 0, 54, 108, 234, 504, 1086, 2340, 5042, 10864, 81, 81, 189, 405, 873, 1881, 4053, 8733, 18817, 40545
Offset: 0
Examples
The array, A(n, k), begins as: 0, 1, 0, 3, 0, 9, 0, 27, ... see A000244; 1, 2, 3, 6, 9, 18, 27, 54, ... A038754; 4, 7, 12, 21, 36, 63, 108, 189, ... A228879; 15, 26, 45, 78, 135, 234, 405, 702, ... 56, 97, 168, 291, 504, 873, 1512, 2619, ... 209, 362, 627, 1086, 1881, 3258, 5643, 9774, ... 780, 1351, 2340, 4053, 7020, 12159, 21060, 36477, ... Antidiagonal triangle, T(n, k), begins as: 0; 1, 1; 0, 2, 4; 3, 3, 7, 15; 0, 6, 12, 26, 56; 9, 9, 21, 45, 97, 209; 0, 18, 36, 78, 168, 362, 780; 27, 27, 63, 135, 291, 627, 1351, 2911; 0, 54, 108, 234, 504, 1086, 2340, 5042, 10864; 81, 81, 189, 405, 873, 1881, 4053, 8733, 18817, 40545;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Crossrefs
Programs
-
Magma
function A(n,k) if k lt 0 then return 0; elif n eq 0 then return Round((1/2)*(1-(-1)^k)*3^((k-1)/2)); elif k eq 0 then return Evaluate(ChebyshevSecond(n), 2); else return 2*A(n, k-1) - A(n-1, k-1); end if; return A; end function; A227418:= func< n,k | A(k, n-k) >; [A227418(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Oct 09 2022
-
Mathematica
A[n_, k_]:= If[k<0, 0, If[k==0, ChebyshevU[n-1, 2], 2*A[n, k-1] - A[n-1, k-1]]]; T[n_, k_]:= A[k, n-k]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 09 2022 *)
-
SageMath
def A(n,k): if (k<0): return 0 elif (k==0): return chebyshev_U(n-1,2) else: return 2*A(n, k-1) - A(n-1, k-1) def A227418(n, k): return A(k, n-k) flatten([[A227418(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Oct 09 2022
Formula
If using the left column and top row to initialize, then: A(n,k) = 2*A(n, k-1) - A(n-1, k-1).
If using only the top row to initialize, then: A(n,k) = 4*A(n-1,k) - A(n-2,k).
If using the left column to initialize, then: A(n,k) = sqrt(3*A(n,k-1) + (-3)^(k-1)), for all n, k > 0.
Other internal relationships that apply are: A(2*n-1, 2*k) = A(n,k)^2 - A(n-1,k)^2;
A(n+1,k) * A(n,k+1) - A(n+1, k+1) * A(n,k) = (-3)^k, for all n, k > 0.
A(n, 0) = A001353(n).
A(n, 1) = A001075(n).
A(n, 2) = A005320(n).
A(n, 3) = A151961(n).
A(1, k) = A038754(k).
A(n, n) = 2*A090018(n), for n > 0 (main diagonal).
A(n, n+1) = A141041(n-1) (superdiagonal).
A(n+1, n) = abs(A099842(n)) (subdiagonal).
From G. C. Greubel, Oct 09 2022: (Start)
T(n, 0) = (1/2)*(1-(-1)^n)*3^((n-1)/2).
T(n, 1) = A038754(n-1).
T(n, 2) = A228879(n-2).
T(2*n-1, n-1) = A141041(n-1).
T(2*n, n) = 2*A090018(n-1), n > 0.
T(n, n-4) = 3*A005320(n-4).
T(n, n-3) = 3*A001075(n-3).
T(n, n-2) = 3*A001353(n-2).
T(n, n-1) = A001075(n-1).
T(n, n) = A001353(n).
Sum_{k=0..n-1} T(n, k) = A084156(n).
Extensions
Offset corrected by G. C. Greubel, Oct 09 2022
Comments