A228879
a(n+2) = 3*a(n), starting 4,7.
Original entry on oeis.org
4, 7, 12, 21, 36, 63, 108, 189, 324, 567, 972, 1701, 2916, 5103, 8748, 15309, 26244, 45927, 78732, 137781, 236196, 413343, 708588, 1240029, 2125764, 3720087, 6377292, 11160261, 19131876, 33480783, 57395628, 100442349, 172186884, 301327047, 516560652
Offset: 0
-
LinearRecurrence[{0, 3}, {4, 7}, 50] (* Paolo Xausa, Oct 14 2024 *)
-
Vec(-(7*x+4)/(3*x^2-1) + O(x^100)) \\ Colin Barker, Jun 09 2014
A292466
Triangle read by rows: T(n,k) = 4*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = 5^m.
Original entry on oeis.org
0, 1, 1, 0, 4, 8, 5, 5, 21, 53, 0, 20, 40, 124, 336, 25, 25, 105, 265, 761, 2105, 0, 100, 200, 620, 1680, 4724, 13144, 125, 125, 525, 1325, 3805, 10525, 29421, 81997, 0, 500, 1000, 3100, 8400, 23620, 65720, 183404, 511392, 625, 625, 2625, 6625, 19025, 52625
Offset: 0
First few rows are:
0;
1, 1;
0, 4, 8;
5, 5, 21, 53;
0, 20, 40, 124, 336;
25, 25, 105, 265, 761, 2105;
0, 100, 200, 620, 1680, 4724, 13144;
125, 125, 525, 1325, 3805, 10525, 29421, 81997.
--------------------------------------------------------------
The diagonal is {0, 1, 8, 53, 336, 2105, ...} and
the next diagonal is {1, 4, 21, 124, 761, 4724, ...}.
Two sequences have the following property:
1^2 - 5* 0^2 = 1 (= 11^0),
4^2 - 5* 1^2 = 11 (= 11^1),
21^2 - 5* 8^2 = 121 (= 11^2),
124^2 - 5* 53^2 = 1331 (= 11^3),
761^2 - 5* 336^2 = 14641 (= 11^4),
4724^2 - 5*2105^2 = 161051 (= 11^5),
...
The diagonal of the triangle is
A091870.
The next diagonal of the triangle is
A108404.
A292495
Triangle read by rows: T(n,k) = (-2)*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = (-1)^m.
Original entry on oeis.org
0, 1, 1, 0, -2, -4, -1, -1, 3, 11, 0, 2, 4, -2, -24, 1, 1, -3, -11, -7, 41, 0, -2, -4, 2, 24, 38, -44, -1, -1, 3, 11, 7, -41, -117, -29, 0, 2, 4, -2, -24, -38, 44, 278, 336, 1, 1, -3, -11, -7, 41, 117, 29, -527, -1199, 0, -2, -4, 2, 24, 38, -44, -278, -336, 718
Offset: 0
First few rows are:
0;
1, 1;
0, -2, -4;
-1, -1, 3, 11;
0, 2, 4, -2, -24;
1, 1, -3, -11, -7, 41;
0, -2, -4, 2, 24, 38, -44;
-1, -1, 3, 11, 7, -41, -117, -29;
0, 2, 4, -2, -24, -38, 44, 278, 336.
The diagonal of the triangle is related to
A099456.
The next diagonal of the triangle is related to
A139011.
A292789
Triangle read by rows: T(n,k) = (-3)*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = (-2)^m.
Original entry on oeis.org
0, 1, 1, 0, -3, -6, -2, -2, 7, 25, 0, 6, 12, -9, -84, 4, 4, -14, -50, -23, 229, 0, -12, -24, 18, 168, 237, -450, -8, -8, 28, 100, 46, -458, -1169, 181, 0, 24, 48, -36, -336, -474, 900, 4407, 3864, 16, 16, -56, -200, -92, 916, 2338, -362, -13583, -25175, 0, -48
Offset: 0
First few rows are:
0;
1, 1;
0, -3, -6;
-2, -2, 7, 25;
0, 6, 12, -9, -84;
4, 4, -14, -50, -23, 229;
0, -12, -24, 18, 168, 237, -450;
-8, -8, 28, 100, 46, -458, -1169, 181;
0, 24, 48, -36, -336, -474, 900, 4407, 3864.
--------------------------------------------------------------
The diagonal is {0, 1, -6, 25, -84, ...} and
the next diagonal is {1, -3, 7, -9, -23, ...}.
Two sequences have the following property:
1^2 + 2* 0^2 = 1 (= 11^0),
(-3)^2 + 2* 1^2 = 11 (= 11^1),
7^2 + 2* (-6)^2 = 121 (= 11^2),
(-9)^2 + 2* 25^2 = 1331 (= 11^3),
(-23)^2 + 2*(-84)^2 = 14641 (= 11^4),
...
Showing 1-4 of 4 results.
Comments