cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292466 Triangle read by rows: T(n,k) = 4*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = 5^m.

Original entry on oeis.org

0, 1, 1, 0, 4, 8, 5, 5, 21, 53, 0, 20, 40, 124, 336, 25, 25, 105, 265, 761, 2105, 0, 100, 200, 620, 1680, 4724, 13144, 125, 125, 525, 1325, 3805, 10525, 29421, 81997, 0, 500, 1000, 3100, 8400, 23620, 65720, 183404, 511392, 625, 625, 2625, 6625, 19025, 52625
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2017

Keywords

Examples

			First few rows are:
    0;
    1,   1;
    0,   4,   8;
    5,   5,  21,   53;
    0,  20,  40,  124,  336;
   25,  25, 105,  265,  761,  2105;
    0, 100, 200,  620, 1680,  4724, 13144;
  125, 125, 525, 1325, 3805, 10525, 29421, 81997.
--------------------------------------------------------------
The diagonal is      {0, 1,  8,  53, 336, 2105, ...} and
the next diagonal is {1, 4, 21, 124, 761, 4724, ...}.
Two sequences have the following property:
     1^2 - 5*   0^2 = 1      (= 11^0),
     4^2 - 5*   1^2 = 11     (= 11^1),
    21^2 - 5*   8^2 = 121    (= 11^2),
   124^2 - 5*  53^2 = 1331   (= 11^3),
   761^2 - 5* 336^2 = 14641  (= 11^4),
  4724^2 - 5*2105^2 = 161051 (= 11^5),
  ...
		

Crossrefs

The diagonal of the triangle is A091870.
The next diagonal of the triangle is A108404.
T(n,k) = b*T(n-1,k-1) + T(n,k-1): A292789 (b=-3), A292495 (b=-2), A117918 and A228405 (b=1), A227418 (b=2), this sequence (b=4).

Formula

T(n+1,n)^2 - 5*T(n,n)^2 = 11^n.

A292789 Triangle read by rows: T(n,k) = (-3)*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = (-2)^m.

Original entry on oeis.org

0, 1, 1, 0, -3, -6, -2, -2, 7, 25, 0, 6, 12, -9, -84, 4, 4, -14, -50, -23, 229, 0, -12, -24, 18, 168, 237, -450, -8, -8, 28, 100, 46, -458, -1169, 181, 0, 24, 48, -36, -336, -474, 900, 4407, 3864, 16, 16, -56, -200, -92, 916, 2338, -362, -13583, -25175, 0, -48
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2017

Keywords

Examples

			First few rows are:
   0;
   1,   1;
   0,  -3,  -6;
  -2,  -2,   7,  25;
   0,   6,  12,  -9,  -84;
   4,   4, -14, -50,  -23,  229;
   0, -12, -24,  18,  168,  237,  -450;
  -8,  -8,  28, 100,   46, -458, -1169,  181;
   0,  24,  48, -36, -336, -474,   900, 4407, 3864.
--------------------------------------------------------------
The diagonal is      {0,  1, -6, 25, -84, ...} and
the next diagonal is {1, -3,  7, -9, -23, ...}.
Two sequences have the following property:
      1^2 + 2*    0^2 = 1      (= 11^0),
   (-3)^2 + 2*    1^2 = 11     (= 11^1),
      7^2 + 2* (-6)^2 = 121    (= 11^2),
   (-9)^2 + 2*   25^2 = 1331   (= 11^3),
  (-23)^2 + 2*(-84)^2 = 14641  (= 11^4),
  ...
		

Crossrefs

T(n,k) = b*T(n-1,k-1) + T(n,k-1): this sequence (b=-3), A292495 (b=-2), A117918 and A228405 (b=1), A227418 (b=2), A292466 (b=4).

Formula

T(n+1,n)^2 + 2*T(n,n)^2 = 11^n.
Showing 1-2 of 2 results.