cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229298 Number of terms in A228919 less than or equal to 10^n.

Original entry on oeis.org

5, 54, 515, 5109, 50933, 508932, 5087994
Offset: 1

Views

Author

Keywords

Comments

0.50801 < lim A229298(n)/10^n = lim A229299(n)/10^n < 0.50966.
Compare with A229299(n)/10^n.

Crossrefs

Programs

  • Mathematica
    fa=FactorInteger; Carlitz[k_,n_] := Mod[n-Sum[If[IntegerQ[k/(fa[n][[i,1]]-1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k,2] == 0 || Mod[n, 4] > 0, Carlitz[k, n], Mod[Carlitz[k, n] - n/2, n]]; Table[Print[Length@Select[Range[10^n], supercar[#+1,#] == 0 &]], {n, 1, 7}]

A229299 Number of terms in A191677 less than or equal to 10^n.

Original entry on oeis.org

3, 30, 347, 3872, 41311, 430305, 4423115
Offset: 1

Views

Author

Keywords

Comments

0.50801 < lim A229299(n)/10^n = lim A229298(n)/10^n < 0.50966.
It seems that the convergence of A(n)/10^n is very slow; compare with A229298(n)/10^n.

Crossrefs

Programs

  • Mathematica
    fa=FactorInteger;Carlitz[k_,n_] := Mod[n-Sum[If[IntegerQ[k/(fa[n][[i,1]]-1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n];supercar[k_, n_] := If[k == 1 || Mod[k,2] == 0 || Mod[n, 4] > 0, Carlitz[k, n], Mod[Carlitz[k, n] - n/2, n]]; Table[Print[Length@Select[Range[10^n], supercar[#-1,#] == 0 &]],{n, 1, 7}]

A228926 Sum(m^(n+1), m=1...n-1) modulo n.

Original entry on oeis.org

0, 1, 2, 0, 0, 3, 0, 0, 6, 5, 0, 0, 0, 7, 7, 0, 0, 9, 0, 0, 14, 11, 0, 0, 0, 13, 18, 0, 0, 15, 0, 0, 22, 17, 23, 0, 0, 19, 26, 0, 0, 21, 0, 0, 30, 23, 0, 0, 0, 25, 34, 0, 0, 27, 44, 0, 38, 29, 0, 0, 0, 31, 42, 0, 0, 33, 0, 0, 46, 35, 0, 0, 0, 37, 35, 0, 66
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[Sum[PowerMod[i,n+1,n], {i, 1, n}], n]; Table[f[n], {n, 100}]
  • PARI
    a(n)=lift(sum(m=1,n-1,Mod(m,n)^(n+1))) \\ Charles R Greathouse IV, Dec 27 2013

Formula

a(n) = A121706(n) mod (n-1). - T. D. Noe, Sep 16 2013
Showing 1-3 of 3 results.