A228931
Optimal ascending continued fraction expansion of sqrt(2)-1.
Original entry on oeis.org
2, -6, 34, 1154, 1331714, 1773462177794, 3145168096065837266706434, 9892082352510403757550172975146702122837936996354
Offset: 1
sqrt(2)=1+1/2*(1-1/6*(1+1/34*(1+1/1154*(1+1/1331714*(1+1/1773462177794*(1+.....))))))
-
ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
# List the first 8 terms of the expansion of sqrt(2)-1
ArticoExp(sqrt(2),8)
-
Flatten[{2, RecurrenceTable[{a[n] == a[n-1]^2 - 2, a[2] == -6}, a, {n, 2, 10}]}] (* Vaclav Kotesovec, Sep 20 2013 *)
A228932
Optimal ascending continued fraction expansion of sqrt(43) - 6.
Original entry on oeis.org
2, 9, 30, 60, 122, -878, 11429, 35241, -177141, 709582, -3123032, -1157723745, 3237738813, -16178936725, 33395053634, -71863018424, -153349368674, -386763022623, -8021033029400, 16314606875900, 52522689388692
Offset: 1
sqrt(43) = 6 + 1/2*(1 + 1/9*(1 + 1/30*(1 + 1/60*(1 + 1/122*(1 - 1/878*(1 + ...)))))).
-
ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
# List the first 8 terms of the expansion of sqrt(43)-6
ArticoExp(sqrt(43),20)
-
ArticoExp[x_, n_] := Round[1/#] & /@ NestList[Round[1/Abs[#]]*Abs[#] - 1 &, FractionalPart[x], n]; Block[{$MaxExtraPrecision = 50000},
ArticoExp[Sqrt[43] - 6, 20]] (* G. C. Greubel, Dec 26 2016 *)
A228930
Optimal ascending continued fraction expansion of e - 2.
Original entry on oeis.org
1, -4, 8, 67, 266, 9757, 47748, -97258, -251115, 671488, -4724169, -28356343, 125269419, -498668029, -5426804695, 15313259790, -40462770156, 105160602326, -4412226092528, -350847041434052, -54342998565206181
Offset: 1
e = 2 + 1*(1 - 1/4*(1 + 1/8*(1 + 1/67*(1 + 1/266*(1 + 1/9757*(1 + ...)))))).
-
ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
# List the first 20 terms of the expansion of exp(1)-2
ArticoExp(exp(1),20)
-
ArticoExp[x_, n_] := Round[1/#] & /@ NestList[Round[1/Abs[#]]*Abs[#] - 1 &, FractionalPart[x], n]; Block[{$MaxExtraPrecision = 50000}, ArticoExp[Exp[1] - 2, 20]] (* G. C. Greubel, Dec 26 2016 *)
A228933
Optimal ascending continued fraction expansion of phi-1=1/phi=(sqrt(5)-1)/2 .
Original entry on oeis.org
2, 4, -18, 322, 103682, 10749957122, 115561578124838522882, 13354478338703157414450712387359637585922, 178342091698891843163466683840822101223162205277179656650156983624835803932590082
Offset: 1
phi = 1+1/2*(1+1/4*(1-1/18*(1+1/322*(1+1/103682*(1+1/10749957122*(1+...))))))
-
ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
# List the first 8 terms of the expansion of 1/phi
ArticoExp((sqrt(5)-1)/2,8)
-
Flatten[{2, 4, RecurrenceTable[{a[n] == a[n-1]^2 - 2, a[3] == -18}, a, {n, 3, 10}]}] (* Vaclav Kotesovec, Sep 20 2013 *)
A228934
Optimal ascending continued fraction expansion of sqrt(44) - 6.
Original entry on oeis.org
2, 4, 15, -99, -199, -800, -79201, -316808, -12545596801, -50182387208, -314783998186522867201, -1259135992746091468808, -198177931028585663493396958369763763148801, -792711724114342653973587833479055052595208
Offset: 1
sqrt(44) = 6 + 1/2*(1 + 1/4*(1 + 1/15*(1 - 1/99*(1 - 1/199*(1 - 1/800*(1 - 1/79201*(1 - 1/316808*(1 - 1/12545596801*(1 - ...))))))))).
-
ArticoExp := proc (n, q::posint)::list; local L, i, z; Digits := 50000; L := []; z := frac(evalf(n)); for i to q+1 do if z = 0 then break end if; L := [op(L), round(1/abs(z))*sign(z)]; z := abs(z)*round(1/abs(z))-1 end do; return L end proc
# List the first 20 terms of the expansion of sqrt(44)-6
ArticoExp(sqrt(44),20)
-
ArticoExp[x_, n_] := Round[1/#] & /@ NestList[Round[1/Abs[#]]*Abs[#] - 1 &, FractionalPart[x], n]; Block[{$MaxExtraPrecision = 50000}, ArticoExp[Sqrt[44] - 6, 20]] (* G. C. Greubel, Dec 26 2016 *)
Showing 1-5 of 5 results.
Comments