cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228955 Table: T(n,k) = n!*binomial(n+1,2*k).

Original entry on oeis.org

1, 1, 1, 2, 6, 6, 36, 6, 24, 240, 120, 120, 1800, 1800, 120, 720, 15120, 25200, 5040, 5040, 141120, 352800, 141120, 5040, 40320, 1451520, 5080320, 3386880, 362880, 362880, 16329600, 76204800, 76204800, 16329600, 362880, 3628800, 199584000, 1197504000, 1676505600, 598752000, 39916800
Offset: 0

Views

Author

Peter Bala, Sep 09 2013

Keywords

Comments

A companion table to A131980(n,k) = n!*binomial(n+1,2*k+1).
Let {P(n,x)}n>=0 be a polynomial sequence. Koutras has defined generalized Eulerian numbers associated with the sequence P(n,x) as the coefficients A(n,k) in the expansion of P(n,x) in a series of factorials of degree n, namely P(n,x) = sum {k = 0..n} A(n,k)* binomial(x+n-k,n). The choice P(n,x) = x^n produces the classical Eulerian numbers of A008292. Let now P(n,x) = x*(x+1)*...*(x+n-1) denote the n-th rising factorial polynomial. Then A131980 is the table of generalized Eulerian numbers associated with the polynomial sequence P(n,2*x) while the present table is the generalized Eulerian numbers associated with the polynomial sequence P(n,2*x+1).

Examples

			Table begins
n\k|    0       1       2       3      4
= = = = = = = = = = = = = = = = = = = = =
0 |     1
1 |     1       1
2 |     2       6
3 |     6      36       6
4 |    24     240     120
5 |   120    1800    1800     120
6 |   720   15120   25200    5040
7 |  5040  141120  352800  141120   5040
8 | 40320 1451520 5080320 3386880 362880
...
Row 3: (6 + 36*t + 6*t^2)/(1 - t)^4 = 1*2*3 + 3*4*5*t + 5*6*7*t^2 + ....
Row 4: (24 + 240*t + 120*t^2)/(1 - t)^5 = 1*2*3*4 + 3*4*5*6*t + 5*6*7*8*t^2 + ....
		

Crossrefs

Cf. A000165 (row sums), A131980.

Programs

  • Maple
    #A228955
    for n from 0 to 10 do
      seq(n!*binomial(n+1,2*k), k = 0..floor((n+1)/2))
    end do;
  • Mathematica
    Flatten[Table[n!*Binomial[n+1,2k],{n,0,10},{k,0,Floor[(n+1)/2]}]](* Harvey P. Dale, Nov 22 2018 *)

Formula

T(n,k) = n!*binomial(n+1,2*k) for n,k >= 0.
Let P(n,x) = x*(x+1)*...*(x+n-1) denote the n-th rising factorial. Then
T(n,k) = sum(j=0..k, (-1)^(k-j)*binomial(n+1,k-j)*P(n,2*j+1) ) for n >= 1.
Recurrence equation: T(n+1,k) = (n+2*k+1)*T(n,k) + (n-2*k+3)*T(n,k-1).
E.g.f.: ( 1 - u*(1 - x) )/( (u - 1)^2 - u^2*x ) = 1 + (1 + x)*u + (2 + 6*x)*u^2/2! + (6 + 36*x + 6*x^2)*u^3/3! + ....
The n-th row polynomial R(n,t) satisfies R(n,t)/(1 - t)^(n+1) = sum(j>=0, P(n,2*j+1)*t^j ). Some examples are given below.
Row sums 2^n*n! = A000165.