A228955 Table: T(n,k) = n!*binomial(n+1,2*k).
1, 1, 1, 2, 6, 6, 36, 6, 24, 240, 120, 120, 1800, 1800, 120, 720, 15120, 25200, 5040, 5040, 141120, 352800, 141120, 5040, 40320, 1451520, 5080320, 3386880, 362880, 362880, 16329600, 76204800, 76204800, 16329600, 362880, 3628800, 199584000, 1197504000, 1676505600, 598752000, 39916800
Offset: 0
Examples
Table begins n\k| 0 1 2 3 4 = = = = = = = = = = = = = = = = = = = = = 0 | 1 1 | 1 1 2 | 2 6 3 | 6 36 6 4 | 24 240 120 5 | 120 1800 1800 120 6 | 720 15120 25200 5040 7 | 5040 141120 352800 141120 5040 8 | 40320 1451520 5080320 3386880 362880 ... Row 3: (6 + 36*t + 6*t^2)/(1 - t)^4 = 1*2*3 + 3*4*5*t + 5*6*7*t^2 + .... Row 4: (24 + 240*t + 120*t^2)/(1 - t)^5 = 1*2*3*4 + 3*4*5*6*t + 5*6*7*8*t^2 + ....
Links
- M. V. Koutras, Eulerian numbers associated with sequences of polynomials, The Fibonacci Quarterly, 32 (1994), 44-57.
Programs
-
Maple
#A228955 for n from 0 to 10 do seq(n!*binomial(n+1,2*k), k = 0..floor((n+1)/2)) end do;
-
Mathematica
Flatten[Table[n!*Binomial[n+1,2k],{n,0,10},{k,0,Floor[(n+1)/2]}]](* Harvey P. Dale, Nov 22 2018 *)
Formula
T(n,k) = n!*binomial(n+1,2*k) for n,k >= 0.
Let P(n,x) = x*(x+1)*...*(x+n-1) denote the n-th rising factorial. Then
T(n,k) = sum(j=0..k, (-1)^(k-j)*binomial(n+1,k-j)*P(n,2*j+1) ) for n >= 1.
Recurrence equation: T(n+1,k) = (n+2*k+1)*T(n,k) + (n-2*k+3)*T(n,k-1).
E.g.f.: ( 1 - u*(1 - x) )/( (u - 1)^2 - u^2*x ) = 1 + (1 + x)*u + (2 + 6*x)*u^2/2! + (6 + 36*x + 6*x^2)*u^3/3! + ....
The n-th row polynomial R(n,t) satisfies R(n,t)/(1 - t)^(n+1) = sum(j>=0, P(n,2*j+1)*t^j ). Some examples are given below.
Row sums 2^n*n! = A000165.
Comments