cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228956 Number of undirected circular permutations i_0, i_1, ..., i_n of 0, 1, ..., n such that all the 2*n+2 numbers |i_0 +/- i_1|, |i_1 +/- i_2|, ..., |i_{n-1} +/- i_n|, |i_n +/- i_0| have the form (p-1)/2 with p an odd prime.

Original entry on oeis.org

1, 1, 1, 1, 5, 9, 17, 84, 30, 127, 791, 2404, 11454, 27680, 25942, 137272, 515947, 2834056, 26583034, 82099932, 306004652, 4518630225, 11242369312, 8942966426, 95473633156, 533328765065
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 09 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
Note that if i-j = (p-1)/2 and i+j = (q-1)/2 for some odd primes p and q then 4*i+2 is the sum of the two primes p and q. So the conjecture is related to Goldbach's conjecture.
Zhi-Wei Sun also made the following similar conjecture: For any integer n > 5, there exists a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n such that all the 2*n+2 numbers 2*|i_k-i_{k+1}|+1 and 2*(i_k+i_{k+1})-1 (k = 0,...,n) (with i_{n+1} = i_0) are primes.

Examples

			a(n) = 1 for n = 1,2,3 due to the natural circular permutation (0,...,n).
a(4) = 1 due to the circular permutation (0,1,4,2,3).
a(5) = 5 due to the circular permutations (0,1,2,4,5,3), (0,1,4,2,3,5), (0,1,4,5,3,2), (0,2,1,4,5,3), (0,3,2,1,4,5).
a(6) = 9 due to the circular permutations
  (0,1,2,4,5,3,6), (0,1,2,4,5,6,3), (0,1,4,2,3,5,6),
  (0,1,4,2,3,6,5), (0,1,4,5,6,3,2), (0,2,1,4,5,3,6),
  (0,2,1,4,5,6,3), (0,3,2,1,4,5,6), (0,5,4,1,2,3,6).
a(7) = 17 due to the circular permutations
  (0,1,2,7,4,5,3,6), (0,1,2,7,4,5,6,3), (0,1,4,7,2,3,5,6),
  (0,1,4,7,2,3,6,5), (0,1,7,2,4,5,3,6), (0,1,7,2,4,5,6,3),
  (0,1,7,4,2,3,5,6), (0,1,7,4,2,3,6,5), (0,1,7,4,5,6,3,2),
  (0,2,1,7,4,5,3,6), (0,2,1,7,4,5,6,3), (0,2,7,1,4,5,3,6),
  (0,2,7,1,4,5,6,3), (0,3,2,1,7,4,5,6), (0,3,2,7,1,4,5,6),
  (0,5,4,1,7,2,3,6), (0,5,4,7,1,2,3,6).
		

Crossrefs

Programs

  • Mathematica
    (* A program to compute required circular permutations for n = 7. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction; for example, (0,6,3,5,4,7,2,1) is identical to (0,1,2,7,4,5,3,6) if we ignore direction. Thus a(7) is half of the number of circular permutations yielded by this program. *)
    p[i_,j_]:=PrimeQ[2*Abs[i-j]+1]&&PrimeQ[2(i+j)+1]
    V[i_]:=Part[Permutations[{1,2,3,4,5,6,7}],i]
    m=0
    Do[Do[If[p[If[j==0,0,Part[V[i],j]],If[j<7,Part[V[i],j+1],0]]==False,Goto[aa]],{j,0,7}]; m=m+1;Print[m,":"," ",0," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]," ",Part[V[i],7]];Label[aa];Continue,{i,1,7!}]

Extensions

a(10)-a(26) from Max Alekseyev, Sep 17 2013