cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A229001 Total sum A(n,k) of the k-th powers of lengths of ascending runs in all permutations of [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 12, 0, 1, 6, 18, 60, 0, 1, 10, 32, 96, 360, 0, 1, 18, 66, 186, 600, 2520, 0, 1, 34, 152, 426, 1222, 4320, 20160, 0, 1, 66, 378, 1110, 2964, 9086, 35280, 181440, 0, 1, 130, 992, 3186, 8254, 22818, 75882, 322560, 1814400
Offset: 0

Views

Author

Alois P. Heinz, Sep 10 2013

Keywords

Examples

			A(3,2) = 32 = 9+5+5+5+5+3 = 3^2+4*(2^2+1^2)+3*1^2: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
Square array A(n,k) begins:
:    0,    0,    0,     0,     0,      0,      0, ...
:    1,    1,    1,     1,     1,      1,      1, ...
:    3,    4,    6,    10,    18,     34,     66, ...
:   12,   18,   32,    66,   152,    378,    992, ...
:   60,   96,  186,   426,  1110,   3186,   9846, ...
:  360,  600, 1222,  2964,  8254,  25620,  86782, ...
: 2520, 4320, 9086, 22818, 66050, 214410, 765506, ...
		

Crossrefs

Columns k=0-10 give: A001710(n+1) for n>0, A001563, A228959, A229003, A228994, A228995, A228996, A228997, A228998, A228999, A229000.
Rows n=0-2 give: A000004, A000012, A052548.
Main diagonal gives: A229002.

Programs

  • Maple
    A:= (n, k)-> add(`if`(n=t, 1, n!/(t+1)!*(t*(n-t+1)+1
                 -((t+1)*(n-t)+1)/(t+2)))*t^k, t=1..n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := Sum[If[n == t, 1, n!/(t + 1)!*(t*(n - t + 1) + 1 - ((t + 1)*(n - t) + 1)/(t + 2))]* t^k, {t, 1, n}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

A(n,k) = Sum_{t=1..n} t^k * A122843(n,t).
For fixed k, A(n,k) ~ n! * n * sum(t>=1, t^k*(t^2+t-1)/(t+2)!) = n! * n * ((Bell(k) - Bell(k+1) + sum(j=0..k, (-1)^j*(2^j*((2*k-j+1)/(j+1))-1) *Bell(k-j)*C(k,j)))*exp(1) - (-1)^k*(2^k-1)), where Bell(k) are Bell numbers A000110. - Vaclav Kotesovec, Sep 12 2013

A229091 a(n) = ((-1)^n*(2^n-1) + Sum_{k>=1} (k^n*(k^2+k-1)/(k+2)!))/exp(1).

Original entry on oeis.org

0, 2, 0, 14, 20, 152, 532, 2914, 14604, 83342, 494164, 3127016, 20810088, 145645866, 1067655656, 8177942670, 65292914084, 542226906224, 4674687594572, 41766307038106, 386112935883604, 3687989974641678, 36347655981682676, 369185211517110928, 3860146249155022160
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 13 2013

Keywords

Comments

Sequence is related to asymptotic of A229001.

Examples

			Sequence A228997 (column k=7 of A229001) is asymptotic to n!*(532*exp(1)+127)*n, therefore a(7) = 532.
		

Crossrefs

Programs

  • Mathematica
    Table[Simplify[((-1)^n*(2^n-1) + Sum[k^n*(k^2+k-1)/(k+2)!,{k,1,Infinity}])/E],{n,1,20}] (* from definition *)
    Table[BellB[n] - BellB[n+1] + Sum[(-1)^j*(2^j*((2*n-j+1)/(j+1))-1) * BellB[n-j]*Binomial[n,j],{j,0,n}],{n,1,20}] (* faster *)

Formula

a(n) = Bell(n) - Bell(n+1) + Sum_{j=0..n} ((-1)^j*(2^j*((2*n-j+1)/(j+1))-1) * Bell(n-j) * C(n,j)).
Showing 1-2 of 2 results.