A229000 Total sum of the 10th powers of lengths of ascending runs in all permutations of [n].
0, 1, 1026, 63152, 1424406, 20708542, 247753826, 2770103322, 31016696398, 360474871982, 4422094936842, 57643276901506, 799742156488022, 11800984833241638, 184874578304981362, 3068030670168269402, 53807082887654595486, 994936476288108004702
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Column k=10 of A229001.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<5, [0, 1, 1026, 63152, 1424406][n+1], ((398*n^3-539*n^2-4964*n+24377)*a(n-1) -(199*n^4+1057*n^3-12543*n^2+57436*n-31692)*a(n-2) +(1017*n^4-7565*n^3+34942*n^2-38827*n-17617)*a(n-3) -(n-3)*(1017*n^3-5258*n^2+21882*n-30370)*a(n-4) +(n-3)*(n-4)*(199*n^2-1212*n+1877)*a(n-5))/ (199*n^2-778*n+792)) end: seq(a(n), n=0..30);
-
Mathematica
k=10; Table[n^k+Sum[t^k*n!*(n*(t^2+t-1)-t*(t^2-4)+1)/(t+2)!+Floor[t/n]*(1/(t*(t+3)+2)),{t,1,n-1}],{n,0,20}] (* Vaclav Kotesovec, Sep 12 2013 *)
Formula
a(n) ~ n! * (83342*exp(1)-1023)*n. - Vaclav Kotesovec, Sep 12 2013
Comments