cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229000 Total sum of the 10th powers of lengths of ascending runs in all permutations of [n].

Original entry on oeis.org

0, 1, 1026, 63152, 1424406, 20708542, 247753826, 2770103322, 31016696398, 360474871982, 4422094936842, 57643276901506, 799742156488022, 11800984833241638, 184874578304981362, 3068030670168269402, 53807082887654595486, 994936476288108004702
Offset: 0

Views

Author

Alois P. Heinz, Sep 10 2013

Keywords

Comments

Generally, A(n,k) ~ n! * n * sum(t>=1, t^k*(t^2+t-1)/(t+2)!) = n! * n * ((Bell(k) - Bell(k+1) + sum(j=0..k, (-1)^j*(2^j*((2*k-j+1)/(j+1))-1) *Bell(k-j) *C(k,j))) *exp(1) - (-1)^k*(2^k-1)), where Bell(k) are Bell numbers A000110. Set k=10 for this sequence. - Vaclav Kotesovec, Sep 12 2013

Crossrefs

Column k=10 of A229001.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [0, 1, 1026, 63152,
          1424406][n+1], ((398*n^3-539*n^2-4964*n+24377)*a(n-1)
          -(199*n^4+1057*n^3-12543*n^2+57436*n-31692)*a(n-2)
          +(1017*n^4-7565*n^3+34942*n^2-38827*n-17617)*a(n-3)
          -(n-3)*(1017*n^3-5258*n^2+21882*n-30370)*a(n-4)
          +(n-3)*(n-4)*(199*n^2-1212*n+1877)*a(n-5))/
          (199*n^2-778*n+792))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    k=10; Table[n^k+Sum[t^k*n!*(n*(t^2+t-1)-t*(t^2-4)+1)/(t+2)!+Floor[t/n]*(1/(t*(t+3)+2)),{t,1,n-1}],{n,0,20}] (* Vaclav Kotesovec, Sep 12 2013 *)

Formula

a(n) ~ n! * (83342*exp(1)-1023)*n. - Vaclav Kotesovec, Sep 12 2013