A229001 Total sum A(n,k) of the k-th powers of lengths of ascending runs in all permutations of [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 1, 0, 1, 3, 0, 1, 4, 12, 0, 1, 6, 18, 60, 0, 1, 10, 32, 96, 360, 0, 1, 18, 66, 186, 600, 2520, 0, 1, 34, 152, 426, 1222, 4320, 20160, 0, 1, 66, 378, 1110, 2964, 9086, 35280, 181440, 0, 1, 130, 992, 3186, 8254, 22818, 75882, 322560, 1814400
Offset: 0
Examples
A(3,2) = 32 = 9+5+5+5+5+3 = 3^2+4*(2^2+1^2)+3*1^2: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1). Square array A(n,k) begins: : 0, 0, 0, 0, 0, 0, 0, ... : 1, 1, 1, 1, 1, 1, 1, ... : 3, 4, 6, 10, 18, 34, 66, ... : 12, 18, 32, 66, 152, 378, 992, ... : 60, 96, 186, 426, 1110, 3186, 9846, ... : 360, 600, 1222, 2964, 8254, 25620, 86782, ... : 2520, 4320, 9086, 22818, 66050, 214410, 765506, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> add(`if`(n=t, 1, n!/(t+1)!*(t*(n-t+1)+1 -((t+1)*(n-t)+1)/(t+2)))*t^k, t=1..n): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
A[n_, k_] := Sum[If[n == t, 1, n!/(t + 1)!*(t*(n - t + 1) + 1 - ((t + 1)*(n - t) + 1)/(t + 2))]* t^k, {t, 1, n}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Formula
A(n,k) = Sum_{t=1..n} t^k * A122843(n,t).
For fixed k, A(n,k) ~ n! * n * sum(t>=1, t^k*(t^2+t-1)/(t+2)!) = n! * n * ((Bell(k) - Bell(k+1) + sum(j=0..k, (-1)^j*(2^j*((2*k-j+1)/(j+1))-1) *Bell(k-j)*C(k,j)))*exp(1) - (-1)^k*(2^k-1)), where Bell(k) are Bell numbers A000110. - Vaclav Kotesovec, Sep 12 2013