cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229020 Decimal expansion of 1 - 1/(1*2) + 1/(1*2*2) - 1/(1*2*2*3) + ...

Original entry on oeis.org

6, 8, 8, 9, 4, 8, 4, 4, 7, 6, 9, 8, 7, 3, 8, 2, 0, 4, 0, 5, 4, 9, 5, 0, 0, 1, 5, 8, 1, 1, 8, 6, 7, 1, 0, 5, 3, 3, 1, 3, 6, 2, 9, 4, 3, 2, 8, 9, 9, 2, 2, 4, 0, 6, 9, 3, 8, 5, 5, 1, 7, 6, 7, 0, 5, 5, 7, 6, 0, 3, 0, 5, 6, 9, 7, 3, 1, 5, 1, 5, 7, 6, 1, 3, 3, 9, 4, 9, 4, 0, 9, 6, 2, 2, 5, 6, 9, 7, 3, 7, 4, 6, 8, 3, 9, 1, 0, 7, 1, 3, 2, 5, 5
Offset: 0

Views

Author

Ralf Stephan, Sep 11 2013

Keywords

Comments

From Peter Bala, Jan 28 2015: (Start)
As a sum of positive terms, the constant equals Sum_{k >= 1} k/(k!*(k+1)!). If we set S(n) = Sum_{k >= 0} k^n/(k!*(k+1)!) for n >= 0, so this constant is S(1), then S(n) is an integral linear combination of S(0) and S(1). For example S(7) = 16*S(0) + 11*S(1). Cf. A086880. S(0) is A096789.
The Pierce expansion of this constant begins [1, 3, 14, 15, 26, 40, 43, 71, 83, 8120, ...] giving the alternating series representation for this constant 1 - 1/3 + 1/(3*14) - 1/(3*14*15) + 1/(3*14*15*26) - .... (End)

Examples

			0.68894844769873820405495001581186710536...
		

Crossrefs

Cf. A130820.

Programs

  • Mathematica
    digits = 113; NSum[(-1)^(n+1)*1/Product[1+Floor[k/2], {k, 1, n}], {n, 1, Infinity}, NSumTerms -> digits, Method -> "AlternatingSigns", WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 21 2014 *)
    RealDigits[BesselI[2, 2], 10, 113][[1]] (* Jean-François Alcover, Nov 19 2015, after Peter Bala *)
  • PARI
    suminf(n=1,(-1)^(n+1)*1./prod(i=1,n,1+floor(i/2)))
    
  • PARI
    suminf(k=1, k/(k!*(k+1)!)) \\ Michel Marcus, Feb 03 2015
    
  • PARI
    besseli(2, 2) \\ Altug Alkan, Nov 19 2015

Formula

Equals exp(-2) * Sum_{k>=0} binomial(2*k,k)/(k+1)!. - Amiram Eldar, Jun 12 2021