A229020 Decimal expansion of 1 - 1/(1*2) + 1/(1*2*2) - 1/(1*2*2*3) + ...
6, 8, 8, 9, 4, 8, 4, 4, 7, 6, 9, 8, 7, 3, 8, 2, 0, 4, 0, 5, 4, 9, 5, 0, 0, 1, 5, 8, 1, 1, 8, 6, 7, 1, 0, 5, 3, 3, 1, 3, 6, 2, 9, 4, 3, 2, 8, 9, 9, 2, 2, 4, 0, 6, 9, 3, 8, 5, 5, 1, 7, 6, 7, 0, 5, 5, 7, 6, 0, 3, 0, 5, 6, 9, 7, 3, 1, 5, 1, 5, 7, 6, 1, 3, 3, 9, 4, 9, 4, 0, 9, 6, 2, 2, 5, 6, 9, 7, 3, 7, 4, 6, 8, 3, 9, 1, 0, 7, 1, 3, 2, 5, 5
Offset: 0
Examples
0.68894844769873820405495001581186710536...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Eric Weisstein's World of Mathematics, Pierce Expansion.
Crossrefs
Cf. A130820.
Programs
-
Mathematica
digits = 113; NSum[(-1)^(n+1)*1/Product[1+Floor[k/2], {k, 1, n}], {n, 1, Infinity}, NSumTerms -> digits, Method -> "AlternatingSigns", WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 21 2014 *) RealDigits[BesselI[2, 2], 10, 113][[1]] (* Jean-François Alcover, Nov 19 2015, after Peter Bala *)
-
PARI
suminf(n=1,(-1)^(n+1)*1./prod(i=1,n,1+floor(i/2)))
-
PARI
suminf(k=1, k/(k!*(k+1)!)) \\ Michel Marcus, Feb 03 2015
-
PARI
besseli(2, 2) \\ Altug Alkan, Nov 19 2015
Formula
Equals exp(-2) * Sum_{k>=0} binomial(2*k,k)/(k+1)!. - Amiram Eldar, Jun 12 2021
Comments