cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A227209 Expansion of 1/((1-x)^2*(1-2*x)*(1-4*x)).

Original entry on oeis.org

1, 8, 43, 198, 849, 3516, 14311, 57746, 231997, 930024, 3724179, 14904894, 59635945, 238576532, 954371647, 3817617642, 15270732693, 61083455040, 244334868715, 977341571990, 3909370482241, 15637490317548
Offset: 0

Views

Author

Yahia Kahloune, Sep 19 2013

Keywords

Comments

This sequence was chosen to illustrate a method of solution.
In general, for the expansion of 1/((1-t*x)^2*(1-s*x)*(1-r*x)) with r>s>t we have the formula: a(n) = ( K*r^(n+3) + L*s^(n+3) + M*t^(n+3) + N*t^(n+3) )/D where K,L,M,N,D have the following values:
K = (s-t)^2;
L = -(r-t)^2;
M = (r-s)*(r+s-2*t);
N = (r-t)*(s-t)*(r-s)*(n+3);
D = (r-s)*(r-t)^2*(s-t)^2.
Directly using formula we get a(n) = ( 4^(n+3) - 9*2^(n+3) + 8 + 6*(n+3) )/18. After transformation we obtain previous formula.

Crossrefs

Cf. A229026.
Partial sums of A171477.

Programs

  • Mathematica
    nn = 25; CoefficientList[Series[1/((1 - x)^2*(1 - 2 x)*(1 - 4 x)), {x, 0, nn}], x] (* T. D. Noe, Sep 19 2013 *)

Formula

G.f.: 1/((1-x)^2*(1-2*x)*(1-4*x)).
a(n) = ( 4^(n+3) - 9*2^(n+3) + 6*n + 26 )/18.
E.g.f.: exp(x)*(13 - 36*exp(x) + 32*exp(3*x) + 3*x)/9. - Stefano Spezia, Feb 23 2025
Showing 1-1 of 1 results.