A229041 G.f. A(x) satisfies: [x^n] A(x)^(n^2-n+1) = 0 for n>=2.
1, 1, -1, 1, -7, -49, -1191, -31569, -1051695, -41520593, -1896894223, -98362962257, -5705059841823, -365846227736001, -25696840682622175, -1961769357361345473, -161728572333727674687, -14318505129615014956737, -1354916705432679538845759, -136467389971873491004759617
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x - x^2 + x^3 - 7*x^4 - 49*x^5 - 1191*x^6 - 31569*x^7 -... Coefficients of x^k in the powers A(x)^(n^2-n+1) of g.f. A(x) begin: n=1: [1, 1, -1, 1, -7, -49, -1191, -31569, -1051695, ...]; n=2: [1, 3, 0, -2, -15, -189, -3850, -101700, -3340845, ...]; n=3: [1, 7, 14, 0, -56, -588, -10808, -273972, -8760325, ...]; n=4: [1,13, 65, 143, 0, -1742, -27534, -638690, -19496334, ...]; n=5: [1,21, 189, 931, 2478, 0, -67312, -1444608, -40653711, ...]; n=6: [1,31, 434, 3596, 19158, 62062, 0, -3116120, -84939504, ...]; n=7: [1,43, 860,10578, 88795, 526449, 2045854, 0,-167991196, ...]; n=8: [1,57,1539,26125,311619,2754297,18283187, 83718693, 0, ...]; ... where the coefficients of x^n in A(x)^(n^2-n+1) all equal zero for n>=2.
Programs
-
PARI
{a(n)=local(A=[1,1]);for(k=1,n,A=concat(A,0);A[#A]=-polcoeff((Ser(A) +O(x^(k+2)))^(k^2+k+1)/(k^2+k+1),k+1));A[n+1]} for(n=0,30,print1(a(n),", "))
Comments