A229064 Lesser of Fermi-Dirac twin primes: both a(n)(>=5) and a(n)+2 are in A050376.
5, 7, 9, 11, 17, 23, 29, 41, 47, 59, 71, 79, 81, 101, 107, 137, 149, 167, 179, 191, 197, 227, 239, 269, 281, 311, 347, 359, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 839, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1367
Offset: 1
Keywords
Examples
2, 3 are not in the sequence, although pairs (2,4) and (3,5) are in A050376. Indeed, 2 and 4 as well as 3 and 5 are not consecutive terms of A050376.
References
- V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..10000
- S. Litsyn and V. S. Shevelev, On factorization of integers with restrictions on the exponent, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.
Crossrefs
Cf. A001359.
Programs
-
Mathematica
inA050376Q[1]:=False; inA050376Q[n_] := Length[#] == 1 && (Union[Rest[IntegerDigits[#[[1]][[2]], 2]]] == {0} || #[[1]][[2]] == 1)&[FactorInteger[n]]; nextA050376[n_] := NestWhile[#+1&, n+1, !inA050376Q[#] == True&]; Select[Range[1500], inA050376Q[#] && (nextA050376[#]-#) == 2&] (* Peter J. C. Moses, Sep 19 2013 *)
-
PARI
isok(n)={my(e1=isprimepower(n), e2=isprimepower(n+2)); n >= 5 && e1 && e2 && !bitand(e1,e1-1) && !bitand(e2,e2-1)} \\ Andrew Howroyd, Oct 16 2024
Comments