A229075 Primes of the form p^2 + q^2 + 21, where p and q are consecutive primes.
191, 311, 479, 911, 1823, 2351, 4079, 5039, 6311, 8231, 9551, 10391, 13151, 14831, 17351, 22079, 24671, 33311, 35951, 41543, 51239, 57839, 61991, 69263, 73751, 76079, 84143, 101279, 103991, 106751, 111431, 115223, 141551, 145823, 198479, 210071, 223151, 263591
Offset: 1
Keywords
Examples
a(1) = 191: prime(4)^2 + prime(4+1)^2 + 21 = 191, which is prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..5000
Programs
-
Maple
KD:= proc() local a; a:= ithprime(n)^2+ithprime(n+1)^2+21; if isprime(a) then RETURN(a): fi; end: seq(KD(),n=1..300);
-
Mathematica
Select[Table[Prime[n]^2 + Prime[n + 1]^2 + 21, {n, 100}], PrimeQ] (* T. D. Noe, Sep 12 2013 *)
Comments